Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Evaluation of the thermal effect potential for Bazhenov formation production stimulation based on the experimental data

https://doi.org/10.33623/0579-9406-2017-4-39-47

Abstract

In this paper the temperature treatment impact on Bazhenov formation core samples are shown. Impact was performed by pyrolysis in a temperature range of 300-480 °C and in the closed autoclave in the presence of water at reservoir pressure. It is shown that as a result of thermal exposure at 400 °C pyrolytic peak S2 is reduced by 90-95% and generation potential of rocks almost completely implemented. The microtomographic samples studies combined with scanning electron microscopy allowed to establish the dependence of permeability and porosity of the rocks. It demonstrated that even at 350 °C the fracture system formed in core samples also the porosity and permeability due to impact may increase from several times to several ten times. The results will allow for a more accurate simulation of enhanced oil recovery treatment on Bazhenov formation rocks to increase oil recovery.

About the Authors

A. A. Erofeev
Московский физико-технический институт
Russian Federation


A. A. Pachezhercev
Московский физико-технический институт
Russian Federation


I. A. Karpov
ООО Газпромнефть НТЦ
Russian Federation


N. V. Morozov
ООО Газпромнефть НТЦ
Russian Federation


A. G. Kalmykov
Московский государственный университет имени М.В. Ломоносова, геологический факультет
Russian Federation


A. N. Cheremisin
Сколковский институт науки и технологии
Russian Federation


E. V. Kozlova
Сколковский институт науки и технологии
Russian Federation


A. Yu. Bychkov
Московский государственный университет имени М.В. Ломоносова, геологический факультет
Russian Federation


References

1. Гончаров И.В., Харин В.С. Использование пиролиза в инертной атмосфере при исследовании органического вещества пород // Проблемы нефти и газа Тюмени. 1982. Т. 56.

2. Бычков А.Ю., Калмыков Г.А., Бугаев И.А. и др. Экспериментальные исследования получения углеводородных флюидов из пород баженовской свиты при гидротермальных условиях // Вестн. Моск. ун-та. Сер. 4. Геология. 2015. № 4. С. 34-39.

3. Корост Д.В., Надежкин Д.В., Ахманов Г.Г. Изучение пустотного пространства нефтематеринской породы при генерации углеводородов // Вестн. Моск. ун-та. Сер. 4: Геология. 2012. №. 4. С. 32-37.

4. Лопатин Н.В., Емец Т.П. Пиролиз в нефтегазовой геохимии. М.: Наука, 1987. 143 с.

5. Alekseev Yu.V., Erofeev A.A., Pachezhertsev A.A. et al. Prospects for use of thermochemical recovery methods for development of the Bazhenov formation // Oil Industry. 2015. Vol. 10. P. 93-97.

6. Behar F., Beaumont V., De B. Penteado H.L. Rock-Eval 6 Technology: Performances and Developments // Oil & Gas. Sci. and Technology. 2001. Vol. 56, N 2. P. 111-134.

7. Chugunov S.S., Kazak A.V., Cheremisin A.N. Integration of X-ray micro computed tomography and focused ion-beam scanning electron microscopy data fore pore-scale characterization of Bazhenov formation, Western Siberia // Oil Industry. 2015. Vol. 10. P. 44-49.

8. Espitalié J., Deroo G., Marquis F. La pyrolyse Rock-Eval et ses applications // Oil & Gas. Sci. and Technology. 1985. Vol. 40, N 5. P. 563-579.

9. Korost D., Korost, D., Mallants, D., Balushkina N. et al. Determining physical properties of unconventional reservoir rocks: from laboratory methods to pore-scale modeling // SPE Unconventional Resources Conference and Exhibition-Asia Pacific. Soci. of Petroleum Engineers, 2013.

10. Kibodeaux K.R. Evolution of porosity, permeability, and fluid saturations during thermal conversion of oil shale // SPE annual technical conference and exhibition. Soci. of Petroleum Engineers, 2014.

11. Mehrabi M., Pasha M., Jia X., Hassanpour A. Pore volume analysis of gas shale samples using 3-D X-ray micro tomography // SPE Offshore Europe Conference and Exhibition. Soci. of Petroleum Engineers, 2015.

12. Panahi H., Kobchenko M., Renard F. et al. A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale // Arxiv preprint arxiv:1401.2448. 2014.

13. Taud H., Martinez-Angeles R., Parrot J.F., Hernandez-Escobedo L. Porosity estimation method by X-ray computed tomography // J. Petrol. Sci. and Engineering. 2005. Vol. 47. N 3. P. 209-217.

14. Tiwari P., Deo M., Lin C.L., Miller J.D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT // Fuel. 2013. Vol. 107. P. 547-554.

15. Vandersteen K., Busselen B., Van Den Abeele K., Carmeliet J. Quantitative characterization of fracture apertures using microfocus computed tomography // Geol. Soc. Lond. Spec. pub. 2003. Vol. 215. P. 61-68.

16. Van Geet M., Swennen R., Wevers M. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography // Sediment. Geol. 2000. Vol. 132. P. 25-36.


Review

For citations:


Erofeev A.A., Pachezhercev A.A., Karpov I.A., Morozov N.V., Kalmykov A.G., Cheremisin A.N., Kozlova E.V., Bychkov A.Yu. Evaluation of the thermal effect potential for Bazhenov formation production stimulation based on the experimental data. Moscow University Bulletin. Series 4. Geology. 2017;(4):39-47. (In Russ.) https://doi.org/10.33623/0579-9406-2017-4-39-47

Views: 250


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)