Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Comparison of oneand two-stage models of copper-porphyry deposits formation

https://doi.org/10.33623/0579-9406-2017-4-31-38

Abstract

Models of copper-porphyry deposits formation examined from the petrological and geochemical points of view. The principal differences between the models are time and mechanism of sulfide ore precipitation and the composition of ore-bearing fluid. It is shown that copper-rich fluid inclusions contain insufficient amount of sulfur for sulfide ore formation and it have to be independent source of sulfur for copper-porphyry deposits formation.

About the Authors

P. Yu. Plechov
Минералогический музей имени А.Е. Ферсмана
Russian Federation


N. A. Nekrylov
Минералогический музей имени А.Е. Ферсмана
Russian Federation


J. .. Blundy
Университет города Бристоль, Школа наук о Земле
Russian Federation


References

1. Боровиков А.А., Бульбак Т.А., Борисенко А.С. и др. Поведение рудных элементов в окисленных хлоридных и карбонатно-хлоридно-сульфатных гетерофазных флюидах Cu-Mo(Au)-порфировых месторождений (по экспериментальным данным) // Геология и геофизика. 2015. Т. 56, № 3. С. 557-570.

2. Буханова Д.С., Плечов П.Ю. Условия формирования Au-Cu-порфирового месторождения Малмыжское (по данным исследования флюидных включений) // Вестн. КРАУНЦ. 2017. T. 34. № 2. С. 61-71.

3. Николаев Ю.Н., Бакшеев И.А., Прокофьев В.Ю. и др. Au-Ag минерализация порфирово-эпитермальных систем Баимской зоны (Западная Чукотка, Россия) // Геология рудных месторождений. 2016. Т. 58, № 4. С. 319-345.

4. Плечов П.Ю. Методы изучения флюидных и расплавных включений. М.: КДУ, 2014. 266 с.

5. Berger B.R., Ayuso R.A., Wynn J.C., Seal R.R. Preliminary model of porphyry copper deposits // U.S.G.S. Open-File Rep. 2008. N 1321. 55 p.

6. Blundy J., Mavrogenes J., Tattitch B. et al. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs // Nature Geosci. 2015. Vol. 8, N 3. P. 235-240.

7. Bodnar R.J., Lecumberri-Sanchez P., Moncada D., Steele-MacInnis M. Fluid inclusions in hydrothermal ore deposits // Treatise on Geochemistry. Sec. Edn. 2014. Vol. 13. P. 119-142.

8. De Hoog J.C.M., Hattori K.H., Hoblitt R.P. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines // Contrib. to Mineral. and Petrol. 2004. Vol. 146, N 6. P. 750-761.

9. Gustafson L.B. Some major factors of porphyry copper genesis // Econ. Geol. 1978. Vol. 73, N 5. P. 600-607

10. Hattori K.H., Keith J.D. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA // Mineral. Deposit. 2001. Vol. 36, N 8. P. 799-806.

11. John D.A., Ayuso R.A., Barton M.D. et al. Porphyry copper deposit model // U.S.G.S. Scie. Investigations Rep. 2010. N 5070-B. P. 169.

12. Klemm L.M., Pettke T., Heinrich C.A., Campos E. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids // Econ. Geol. 2007. Vol. 102, N 6. P. 1021-1045.

13. Landtwing M.R., Pettke T., Halter W.E. et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry // Earth and Planet. Sci. Lett. 2005. Vol. 235, N 1. P. 229-243.

14. Lowell J.D., Guilbert J.M. Lateral and vertical alteration mineralization zoning in porphyry ore deposits // Econ. Geol. 1970. Vol. 65, N 4. P. 373-408.

15. Mudd G.M., Weng Z., Jowitt S.M. A detailed assessment of global Cu resource trends and endowments // Econ. Geol. 2013. Vol. 108, N 5. P. 1163-1183.

16. Richards J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins // Ore Geol. Rev. 2011. Vol. 40, N 1. P. 1-26.

17. Rusk B.G., Reed M.H., Dilles J.H. et al. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT // Chem. Geol. 2004. Vol. 210, N 1. P. 173-199.

18. Seedorff E., Dilles J.D., Proffett J.M. et al. Porphyry deposits: Characteristics and origin of hypogene features // Econ. Geol.100th anniversary volume. 2005. Vol. 29. P. 251-298.

19. Seo J.H., Guillong M., Heinrich C.A. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits // Earth and Planet. Sci. Lett. 2009. Vol. 282, N 1. P. 323-328.

20. Seo J.H., Heinrich C.A. Selective copper diffusion into quartz-hosted vapor inclusions: evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation // Geochim. et Cosmochim. Acta. 2013. Vol. 113. P. 60-69.

21. Sillitoe R.H. The tops and bottoms of porphyry copper deposits // Econ. Geol. 1973. Vol. 68, N 6. P. 799-815.

22. Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. Vol. 105, N 1. P. 3-41.

23. Sinclair W.D. Porphyry deposits // Geological Association of Canada // Mineral Dep. Division. Spec. publ. 2007. Vol. 5. P. 223-243.


Review

For citations:


Plechov P.Yu., Nekrylov N.A., Blundy J... Comparison of oneand two-stage models of copper-porphyry deposits formation. Moscow University Bulletin. Series 4. Geology. 2017;(4):31-38. (In Russ.) https://doi.org/10.33623/0579-9406-2017-4-31-38

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)