Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Caand Mg-perovskites phases of mantle of the Earth as a possible reservoir for Al by computer simulation

https://doi.org/10.33623/0579-9406-2017-4-3-7

Abstract

Current paper presents semi-empirical and quantum chemistry theoretical investigations of Al atoms energy occurrences in CaSiO3 and MgSiO3 with perovskites structures under Earth’s mantle thermodynamic conditions. The phase diagram of CaSiO3 was reproduced and refined. Possible mechanisms of aluminum atoms incorporation into structures were investigated. The results of the calculations indicate that aluminum is preferably included in the MgSiO3 than СaSiO3. Perovskite phases isomorphic capacity evaluation for Al showed that in MgSiO3 this value can reach 2.4 mol.% at 120 GPa and 2400 K. CaSiO3 can’t be a container for the aluminum atoms in the Earth’s mantle.

About the Authors

E. I. Marchenko
Московский государственный университет имени М.В. Ломоносова, геологический факультет
Russian Federation


N. N. Eremin
Московский государственный университет имени М.В. Ломоносова, геологический факультет
Russian Federation


A. Y. Bychkov
Московский государственный университет имени М.В. Ломоносова, геологический факультет
Russian Federation


A. E. Grechanovsky
Институт геохимии, минералогии и рудообразования имени Н.П. Семененко НАН Украины
Russian Federation


References

1. Пущаровский Ю.М., Пущаровский Д.Ю. Геология мантии Земли. М.: ГЕОС, 2010. 140 с.

2. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. М.: ГЕОС, 2012. С. 18-29.

3. Akber-Knutson S., Steinle-Neumann G., Asimow P.D. Effect of Al on the sharpness of the MgSiO3 perovskite to post-perovskite phase transition // Geophys. Res. Lett. 2005. Vol. 32. L14303.

4. Caracas R., Wentzcovitch R. CaSiO3 perovskite at lower mantle pressures // Geophys. Res. Lett. 2005. Vol. 32. L06306.

5. Chibisov A.N. Computer simulation of the point defect formation in MgSiO3-based ceramic materials // J. Struct. Chem. 2015. Vol. 56, N 3. P. 454-457.

6. Eremin N.N., Grechanovsky A.E., Marchenko E.I. Аtomistic and ab-initio modeling of СaAl2O4 high-pressure polymorphs under Earth’s mantle conditions // Crys. Rep. Vol. 61, N 3. P. 432-442.

7. Gale J.D. GULP: Capabilities and prospects // Z. Krist. 2005. Vol. 220. P. 552-554.

8. Giannozzi P., Baroni S., Bonini N. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials // J. Phys. Condens. Matter. 2009. Vol. 21, N 39. P. 395-502.

9. Irifune T. Absence of an aluminous phase in the upper part of the Earth’s lower mantle // Lett. Nature. 1994. Vol. 370. P. 131-133.

10. Irifune T., Tsuchiya T. Mineralogy of the Earth - phase transitions and mineralogy of the lower mantle // Treatise on Geophysics. Vol. 2. Elsevier, 2007. P. 33-62.

11. Jung D.Y., Oganov A.R. Ab initio study of the high-pressure behavior of CaSiO3 perovskite // Phys. Chem. Minerals. 2005. Vol. 32. P. 146-153.

12. Kurashina T., Hirose K., Ono S. et al. Phase transition in Al-bearing CaSiO3 perovskite: implicationsfor seismic discontinuities in the lower mantle // Phys. Earth and Planet. Inter. 2004. Vol. 145. P. 67-74.

13. Li L., Weidner D.J., Brodholt J. et al. Phase stability of CaSiO3 perovskite at high pressure and temperature: Insights from ab initio molecular dynamics // Phys. Earth and Planet. Inter. 2006. Vol. 155. P. 260-268.

14. Magyari-Köpe B., Vitos L., Grimvall G. et al. Low-temperature crystal structure of CaSiO3 perovskite: An abinitio total energy study // Phys. Rev. B. 2002. Vol. 65. 193107.

15. Ono S., Ohishi Y., Mibe K. Phase transition of Caperovskite and stability of Al-bearing Mg-perovskite in the lower Mantle // Amer. Mineral. 2004. Vol. 89. P. 1480-1485.

16. Pedone A., Malavasi G., Menziani M.C. et al. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses // J. Phys. Chem. B. 2006. Vol. 110. P. 11780-11795.

17. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy // Phys. Rev. B. 1992. Vol. 45. 13244.

18. Ringwood A.E. Composition and Petrology of the Earth’s Mantle. McGraw-Hill Company, US, 1975. 672 p.

19. Shim S.-H., Jeanloz R., Duffy T.S. Tetragonal structure of CaSiO3 perovskite above 20 GPa // Geophys. Res. Lett. 2002. Vol. 29, N 24. P. 21-66.

20. Stixrude L., Cohen R.E., Rici Y., Krakauer A. Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure // Amer. Mineral. 1996. Vol. 81. P. 1293-1296.

21. Swamy V., Dubrovinsky L.S. Thermodynamic data for the phases in the CaSiO3 system // Geochim. et Cosmochim. Acta. 1997. Vol. 61. P. 1181-1191.

22. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism // Phys. Rev. B. 1990. Vol. 41. P. 7892-7895.

23. Yamamoto T., Yuen D.A., Ebisuzaki T. Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from ferst-principles calculations // Earth and Planet. Science Lett. 2003. Vol. 206. P. 617-625.

24. Zhang J., Weidner D.J. Thermal Equation of State of Aluminum-Enriched Silicate Perovskite // Sci. 1999. Vol. 284. P. 782-784.


Review

For citations:


Marchenko E.I., Eremin N.N., Bychkov A.Y., Grechanovsky A.E. Caand Mg-perovskites phases of mantle of the Earth as a possible reservoir for Al by computer simulation. Moscow University Bulletin. Series 4. Geology. 2017;(4):3-7. (In Russ.) https://doi.org/10.33623/0579-9406-2017-4-3-7

Views: 267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)