The electrophysical properties contrasts in sand-clay ground and GPR reflections
https://doi.org/10.55959/MSU0579-9406-4-2025-64-4-114-123
Abstract
In sand-clay ground, the depth variations were established between lithological boundaries and the contrast of electromagnetic properties of the soil. As a result, GPR reflections diverge in depth from the lithological boundaries, complicating geological interpretation. The forward problem is solved using a model constructed from measured electromagnetic parameters. The modeling results made it possible to reasonably relate lithological boundaries to GPR reflections and to determine the cause of their depth variations. Consequently, the geological interpretation of GPR data is enhanced.
About the Authors
M. A. TarasovaRussian Federation
Mariya A. Tarasova
Moscow
S. S. Bricheva
Russian Federation
Svetlana S. Bricheva
Moscow
M. L. Vladov
Russian Federation
Mikhail L. Vladov
Moscow
References
1. Владов М.Л., Судакова М.С. Георадиолокация. От физических основ до перспективных направлений: Учебное пособие. М.: ГЕОС, 2017. 240 с.
2. Калинкевич А.А., Кутуза Б.Г., Марчук В.Н. и др. Многочастотная радиолокация «Эффективной» влажности почвы // Радиолокация. 2018. C. 193–208.
3. Качинский Н.А. Механический и микроагрегатный состав почвы, методы его изучения. Акад. наук СССР. Почв. ин-т им. В.В. Докучаева. М.: Изд-во Акад. наук СССР, 1958. 192 с.
4. Пузаченко Ю.Г. Математические методы в экологических и географических исследованиях. М.: Академия, 2004. 416 с.
5. Сизова Т.М. Статистика: учебное пособие. СПб.: СПб НИУ ИТМО, 2013. 176 c.
6. Снопков С.В., Давыденко Ю.А. Использование геофизических методов при поиске и изучении памятников древней металлургии железа в Приольхонье (Западный берег Байкала) // Геоархеология и археологическая минералогия. 2019. С. 35–39.
7. Bobrov N., Titov A., Krekhov A. GPR studies of the thermocline on fresh-water lakes // 19th International Multidisciplinary Scientific GeoConference SGEM 2019. 2019. P. 829–838.
8. Botha G., Bristow C., Porat N., et al. Evidence for dune reactivation from GPR profiles on the Maputaland coastal plain, South Africa // Geological Society, London, Special Publications. Vol. 211. 2003. P. 29–46.
9. Bradford J., Johnson C., Brosten T., et al. Imaging thermal stratigraphy in freshwater lakes using georadar // Geophysical Research Letters. 2007. Vol. 34.
10. Finlay P.I., Parry N.S., Proskin S.A., Mickle R.J. An Over-view of Ice Profiling Using Ground Penetrating Radar (GPR) // Symposium on the Application of Geophysics to Engineering and Environmental Problems. 2008.
11. Giannopoulos A. The Investigation of Transmission-Line Matrix and Finite-Difference Time-Domain Methods for the Forward Problem of Ground Probing Radar. 1997. PhD thesis, University of York.
12. Krylov S., Bobrov N., Pryakhina G., et al. Peculiarities of distribution and transformation of water in the Keret’ River tidal estuary // Russian Meteorology and Hydrology. Vol. 39. 2014. 677–684.
13. Robinson D.A. Jones S.B., Wraith J.M., Friedman S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry // Vadose Zone Journal. 2003. P. 444–475.
14. Topp G.C., Davis J.L., Annan A.P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines // Water Resources Research.1980. Vol. 16, No. 3. P. 574–582.
15. Van Dam R.L., Schlager W., Dekkers M.J., Huisman J.A. Iron oxides as a cause of GPR reflections // Geophysics. 2002. Vol. P. 536–45.
16. Warren C., Giannopoulos A., Giannakis I. GprMax: Opensource software to simulate electromagnetic wave propagation for Ground Penetrating Radar // Computer Physics Communications. 2016. Vol. 209. P. 160–173.
Review
For citations:
Tarasova M.A., Bricheva S.S., Vladov M.L. The electrophysical properties contrasts in sand-clay ground and GPR reflections. Moscow University Bulletin. Series 4. Geology. 2025;64(4):114-123. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2025-64-4-114-123