Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Kinetics of talc dissolution in the presence of organic complexing agents

https://doi.org/10.55959/MSU0579-9406-4-2024-63-3-59-64

Abstract

Natural silicates are potential sources of divalent cations, which are necessary for the mineralization of CO2 in the form of carbonates. The kinetics study of the natural talc dissolution was carried out in flow-through reactors at 25 °C in the presence and absence of organic ligands — oxalate and citrate, at pH 3. Increasing of the rate of talc dissolution in the presence of citrate and oxalate, approximately 3–4 times, is typical only for the initial stage of mineral dissolution. The steady-state dissolution rates of talc were established approximately 30–40 hours after the beginning of the experiment and were equal to 3E–10–16 mol/cm2s.

About the Authors

O. N. Karaseva
Институт экспериментальной минералогии имени академика Д.С. Коржинского
Russian Federation

Olga N. Karaseva

Chernogolovka



L. Z. Lakshtanov
Институт экспериментальной минералогии имени академика Д.С. Коржинского
Russian Federation

Leonid Z. Lakshtanov

Chernogolovka



D. A. Khanin
Институт экспериментальной минералогии имени академика Д.С. Коржинского; Московский государственный университет имени М.В. Ломоносова
Russian Federation

Dmitriy A. Khanin

Chernogolovka, Moscow



A. S. Proskuryakova
Институт экспериментальной минералогии имени академика Д.С. Коржинского
Russian Federation

Aleksandra S. Proskuryakova

Chernogolovka



E. V. Khanina
Институт экспериментальной минералогии имени академика Д.С. Коржинского
Russian Federation

Elena V. Khanina

Chernogolovka



References

1. Соколова Т.А. Разрушение глинистых минералов в модельных опытах и в почвах: возможные механизмы, скорость, диагностика (анализ литературы) // Почвоведение. 2013. № 2. С. 201–218.

2. Daval D., Hellmann R., Martinez I., et al. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2 // Chem. Geo. 2013. V. 351. P. 245–256.

3. Hänchen M., Prigiobbe V., Storti G., et al. Dissolution kinetics of forsteritic olivine at 90–150 °C including effects of the presence of CO2 // Geochim. Cosmochim. Acta. 2006. V. 70. № 17. P. 4403–4416.

4. Huijgen W., Comans R., Witkamp G. Cost evaluation of CO2 sequestration by aqueous mineral carbonation // Energy Convers. Manag. 2007. V. 48. № 47. P. 1923–1935.

5. Jurinski J. B., Rimstidt J. D. Biodurability of talc // Amer. Min. 2001. V. 86. P. 392–399.

6. Lin F.-C., Cemency C. V. The dissolution kinetics of brucite, antigorite, talc and phlogopite at room temperature and pressure // Am. Min. 1981. V. 66. P. 801–806.

7. Luce R., Bartlett R., Parks G. Dissolution kinetics of magnesium silicates // Geochim. Cosmochim. Acta. 1972. V. 6. P. 35–50.

8. Newlands K. C., Foss M., Matchei T., et al. Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slagand fly-ash-like compositions // J. Am. Ceram. Soc. 2017. V. 100. № 5. P. 1941–1955.

9. Olsen A.A., Rimstidt D. Oxalate-promoted forsterite dissolution at low pH // Geochim. Cosmochim. Acta 2008. V. 72. № 7. P. 1758–1766.

10. Prigiobbe V., Hänchen M., Werner M., et al. Mineral carbonation process for CO2 sequestration // Energy Procedia. 2009. V.1. № 1. P. 4885–4890.

11. Saldi G., Köhler S., Marty N., Oelkers E. Dissolution rates of talc as a function of solution composition, pH and temperature // Geochim. Cosmochim. Acta. 2007. V. 71. № 14. P. 3446–3457.

12. Stumm W. Chemistry of the Solid-Water Interface. N.Y., Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, 1992. P. 428.

13. Sun C., Yao Z., Wang Q., et al. Theoretical study on the organic acid promoted dissolution mechanism of forsterite mineral // Appl. Surf. Sci. 2023. V. 614. P. 156063.

14. Tsomaia N., Brantley S., Hamilton J., et al. NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal // Amer. Min. 2003. V. 88. P. 54–67.

15. Wang H., Feng Q., Liu K. The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process // Appl. Clay Sci. 2016. V. 132–133. P. 273–280.

16. Wogelius R., Walther J. Olivine dissolution kinetics at near-surface conditions // Chem. Geo. 1992. V. 97. P. 101–112.


Review

For citations:


Karaseva O.N., Lakshtanov L.Z., Khanin D.A., Proskuryakova A.S., Khanina E.V. Kinetics of talc dissolution in the presence of organic complexing agents. Moscow University Bulletin. Series 4. Geology. 2024;(3):59-64. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-3-59-64

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)