Kinetics of talc dissolution in the presence of organic complexing agents
https://doi.org/10.55959/MSU0579-9406-4-2024-63-3-59-64
Abstract
Natural silicates are potential sources of divalent cations, which are necessary for the mineralization of CO2 in the form of carbonates. The kinetics study of the natural talc dissolution was carried out in flow-through reactors at 25 °C in the presence and absence of organic ligands — oxalate and citrate, at pH 3. Increasing of the rate of talc dissolution in the presence of citrate and oxalate, approximately 3–4 times, is typical only for the initial stage of mineral dissolution. The steady-state dissolution rates of talc were established approximately 30–40 hours after the beginning of the experiment and were equal to 3E–10–16 mol/cm2s.
Keywords
About the Authors
O. N. KarasevaRussian Federation
Olga N. Karaseva
Chernogolovka
L. Z. Lakshtanov
Russian Federation
Leonid Z. Lakshtanov
Chernogolovka
D. A. Khanin
Russian Federation
Dmitriy A. Khanin
Chernogolovka, Moscow
A. S. Proskuryakova
Russian Federation
Aleksandra S. Proskuryakova
Chernogolovka
E. V. Khanina
Russian Federation
Elena V. Khanina
Chernogolovka
References
1. Соколова Т.А. Разрушение глинистых минералов в модельных опытах и в почвах: возможные механизмы, скорость, диагностика (анализ литературы) // Почвоведение. 2013. № 2. С. 201–218.
2. Daval D., Hellmann R., Martinez I., et al. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2 // Chem. Geo. 2013. V. 351. P. 245–256.
3. Hänchen M., Prigiobbe V., Storti G., et al. Dissolution kinetics of forsteritic olivine at 90–150 °C including effects of the presence of CO2 // Geochim. Cosmochim. Acta. 2006. V. 70. № 17. P. 4403–4416.
4. Huijgen W., Comans R., Witkamp G. Cost evaluation of CO2 sequestration by aqueous mineral carbonation // Energy Convers. Manag. 2007. V. 48. № 47. P. 1923–1935.
5. Jurinski J. B., Rimstidt J. D. Biodurability of talc // Amer. Min. 2001. V. 86. P. 392–399.
6. Lin F.-C., Cemency C. V. The dissolution kinetics of brucite, antigorite, talc and phlogopite at room temperature and pressure // Am. Min. 1981. V. 66. P. 801–806.
7. Luce R., Bartlett R., Parks G. Dissolution kinetics of magnesium silicates // Geochim. Cosmochim. Acta. 1972. V. 6. P. 35–50.
8. Newlands K. C., Foss M., Matchei T., et al. Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slagand fly-ash-like compositions // J. Am. Ceram. Soc. 2017. V. 100. № 5. P. 1941–1955.
9. Olsen A.A., Rimstidt D. Oxalate-promoted forsterite dissolution at low pH // Geochim. Cosmochim. Acta 2008. V. 72. № 7. P. 1758–1766.
10. Prigiobbe V., Hänchen M., Werner M., et al. Mineral carbonation process for CO2 sequestration // Energy Procedia. 2009. V.1. № 1. P. 4885–4890.
11. Saldi G., Köhler S., Marty N., Oelkers E. Dissolution rates of talc as a function of solution composition, pH and temperature // Geochim. Cosmochim. Acta. 2007. V. 71. № 14. P. 3446–3457.
12. Stumm W. Chemistry of the Solid-Water Interface. N.Y., Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, 1992. P. 428.
13. Sun C., Yao Z., Wang Q., et al. Theoretical study on the organic acid promoted dissolution mechanism of forsterite mineral // Appl. Surf. Sci. 2023. V. 614. P. 156063.
14. Tsomaia N., Brantley S., Hamilton J., et al. NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal // Amer. Min. 2003. V. 88. P. 54–67.
15. Wang H., Feng Q., Liu K. The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process // Appl. Clay Sci. 2016. V. 132–133. P. 273–280.
16. Wogelius R., Walther J. Olivine dissolution kinetics at near-surface conditions // Chem. Geo. 1992. V. 97. P. 101–112.
Review
For citations:
Karaseva O.N., Lakshtanov L.Z., Khanin D.A., Proskuryakova A.S., Khanina E.V. Kinetics of talc dissolution in the presence of organic complexing agents. Moscow University Bulletin. Series 4. Geology. 2024;(3):59-64. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-3-59-64













