Investigation of the limitations and applicability of the method of homogeneous functions for solving the inverse kinematic problem of seismic exploration
https://doi.org/10.55959/MSU0579-9406-4-2023-63-1-85-96
Abstract
The results of the application of the variational ray tracing algorithm to study the possibilities and limitations of one of the methods for solving the inverse kinematic problem of seismic exploration — the method of homogeneous functions developed at the Department of Seismometry and Geoacoustics of Moscow State University are presented. As a result of the calculations carried out on synthetic models and field material, conclusions were drawn about the exploration possibilities and areas of application of the method of homogeneous functions. Model examples show that the method of homogeneous functions gives correct results only for simple media: vertically inhomogeneous or layered with slightly inclined boundaries, and folds or inclusions can be restored only at a qualitative level. When working with real field data, the method of homogeneous functions correctly restores the velocity structure of the section to a depth of 1/3-1/2 of the maximum depth of ray penetration. At the same time, it makes sense to interpret only large anomalies with contrasting velocity values on the obtained velocity sections.
About the Authors
Ju. A. GomanyukRussian Federation
Julia A. Gomanyuk
Moscow
P. Yu. Stepanov
Russian Federation
Pavel Yu. Stepanov
Moscow
A. P. Ermakov
Russian Federation
Alexander P. Ermakov
Moscow
References
1. Облогина Т.И. Кинематическая теория сейсмических волн в неоднородных анизотропных средах // Вестн. Моск. ун-та. Сер. 4. Геология. 1998. № 6. С. 52–59.
2. Пийп В.Б. Способ определения разреза в изолиниях скорости по годографам рефрагированных волн // Изв. АН СССР. Сер. Физика Земли. 1978. № 8. С. 65–72.
3. Пийп В.Б. Кинематическая интерпретация сейсмических данных в средах с переменными скоростями: Автореф. докт. дисс. Новосибирск, 1988.
4. Пийп В.Б. Локальная реконструкция сейсмического разреза по данным преломленных волн на основе однородных функций // Физика Земли. 1991. № 10. С. 24–32.
5. Пийп В.Б., Ермаков А.П. Океаническая кора Черноморской впадины по сейсмическим данным // Вестн. Моск. ун-та. Сер. 4. Геология. 2011. № 5. С. 61–68.
6. Пийп В.Б., Ефимова Е.А. Методы однородных функций и моделирования для восстановления геологического разреза в Тибете по годографам преломленных волн // Вестн. Моск. ун-та. Сер. 4. Геология. 2014. № 5. С. 96–106.
7. Степанов П.Ю., Гоманюк Ю.А. Математическое моделирование кинематики сейсмических волн в сложнопостроенных средах // Вестн. Моск. ун-та. Сер. 4. Геология. 2022. № 6. С. 167–178.
8. Cerveny V. Seismic ray theory. 1st Edit. Cambridge: Cambridge Univ. Press, 2001. 713 p.
9. Piip V.B. 2D inversion of refraction traveltime curves using homogeneous functions // Geophys. Prospecting. 2001. Vol. 49. P. 461–482.
Review
For citations:
Gomanyuk J.A., Stepanov P.Yu., Ermakov A.P. Investigation of the limitations and applicability of the method of homogeneous functions for solving the inverse kinematic problem of seismic exploration. Moscow University Bulletin. Series 4. Geology. 2023;(1):85-96. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2023-63-1-85-96