Fractal analysis of the sulfide composition and structure of interspersed ores in picrite gabbro-dolerites of the Oktyabrsky deposit, Norilsk ore field
https://doi.org/10.55959/MSU0579-9406-4-2023-63-1-60-74
Abstract
The analysis of ore samples taken from wells drilled on the Eastern flank of the Oktyabrskoye deposit was carried out. In the vein-disseminated sulfide copper-nickel ores of the deposit, three types of mineralization are distinguished, which clearly differ from each other: interstitial-teardrop-like, interstitial, tear-shaped-interstitial. A sample of each type of ore was examined by 3D tomography and analyzed using fractal theory. Based on the results of the study, a conclusion was made about the relationship between the fractal dimensions of ore minerals and the dynamics of the formation of various types of ores. The pattern of changes in the intensity of mineralization from the thickness of the layers is established. The results obtained may be of great importance in relation to the technology of enrichment of new types of ores from the flanks of the deposit, and also be an additional criterion for identifying in disseminated ores zones with the highest intensity of ore mineralization during prospecting and exploration in the Norilsk ore region.
About the Authors
I. I. NikulinRussian Federation
Ivan I. Nikulin
Saint Petersburg
A. O. Kalashnikov
Russian Federation
Andey O. Kalashnikov
Apatity
I. O. Krylov
Russian Federation
Ivan O. Krylov
Moscow
Ju. A. Mikhailova
Russian Federation
Julia A. Mikhailova
Kazan
N. Yu. Groshev
Russian Federation
Nikolay Yu. Groshev
Kazan
R. I. Kadyrov
Russian Federation
Rail I. Kadyrov
Kazan
References
1. Геология Норильской металлогенической провинции / Под ред. И.И. Никулина. М.: МАКС Пресс, 2020. 524 с.
2. Горяинов П.М., Иванюк Г.Ю. Самоорганизация минеральных систем. М.: ГЕОС, 2001. Т. 312. 256 с.
3. Горяинов П.М. Иванюк Г.Ю. и др. Структурная организация рудной зоны Коашвинского апатит-нефелинового месторождения // Отеч. геология. 2007. №. 2. С. 55–60.
4. Радько В.А. Модель динамической дифференциации интрузивных траппов северо-запада Сибирской платформы // Геология и геофизика. 1991. № 11. С. 19–27.
5. Чернявский А.В., Степенщиков Д.Г. Метод сегментации изображения для подсчета процентного содержания минералов с помощью авторской программы // Тр. Ферсмановской науч. сессии ГИ КНЦ РАН. 2021. № 18. С. 414–418.
6. Afzal P., Ahmadi K., Rahbar K. Application of fractal-wavelet analysis for separation of geochemical anomalies // J. African Earth Sci. 2017. Vol. 128. P. 27–36.
7. Blenkinsop T.G., Sanderson D.J. Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton // Geol. Soc. Lond. Spec. Publ. 1999. Vol. 155. N 1. P. 141–151.
8. Carlson C.A. Spatial distribution of ore deposits // Geology. 1991. Vol. 19. N 2. P. 111–114.
9. Chappard D., Legrand E., Haettich B. et al. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two‐dimensional complexity // J. Pathology: A Journal of the Pathological Soc. of Great Britain and Ireland. 2001. Vol. 195, N 4. P. 515–521.
10. Chen G., Cheng Q. Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background // Mathem. Geosci. 2018. Vol. 50, N 3. P. 249–272.
11. Cheng Q., Agterberg F.P., Ballantyne S.B. The separation of geochemical anomalies from background by fractal methods // J. Geochem. explor. 1994. Vol. 51, N 2. P. 109–130.
12. Cheng Q., Xu Y., Grunsky E. Integrated spatial and spectrum method for geochemical anomaly separation // Natural Resources Res. 2000. Vol. 9, N 1. P. 43–52.
13. Falconer K. Fractal geometry: mathematical foundations and applications. England, John Wiley & Sons, 2004.
14. Gavriluţ A., Mercheş I., Agop M. Atomicity through fractal measure theory. England, Springer Intern. Publ., 2019. 28 p.
15. Goryainov P.M., Ivanyuk G.Y., Kalashnikov A.O. Topography formation as an element of lithospheric self-organization // Russ. Geol. and geophysics. 2013. Vol. 54, N 9. P. 1071–1082.
16. Haddad-Martim P.M., de Souza Filho C.R., Carranza E.J.M. Spatial analysis of mineral deposit distribution: A review of methods and implications for structural controls on iron oxide-copper-gold mineralization in Carajás, Brazil // Ore Geol. Rev. 2017. Vol. 81. P. 230–244.
17. Harrigan T.P., Mann R.W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor // J. Materials Sci. 1984. Vol. 19, N 3. P. 761–767.
18. Hounsfield G.N. Computerized transverse axial scanning (tomography): P. 1. Description of system // British J. Radiology. 1973. Vol. 46, N 552. P. 1016–1022.
19. Ivanyuk G.,Yakovenchuk V., Pakhomovsky Y. et al. Self-organization of the Khibiny alkaline massif (Kola Peninsula, Russia). Croatia, Rijeka: InTech, 2012. 131 p.
20. Kruhl J.H. Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy // J. Structur. Geol. 2013. Vol. 46. P. 2–21.
21. Mandelbrot B.B. The fractal geometry of nature. N.Y.: WH freeman, 1982. Vol. 1. 152 p.
22. McCaffrey K.J.W., Johnston J.D. Fractal analysis of a mineralised vein deposit: Curraghinalt gold deposit, County Tyrone // Mineral. Deposita. 1996. Vol. 31, N 1. P. 52–58.
23. Perugini D., Poli G., Mazzuoli R. Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows // J. Volcanology and Geothermal Res. 2003. Vol. 124, N 3-4. P. 255–279.
24. Perugini D., Poli G. The mixing of magmas in plutonic and volcanic environments: analogies and differences // Lithos. 2012. Vol. 153. P. 261–277.
25. Peternell M., Bitencourt M., Kruhl J.H. et al. Macro and microstructures as indicators of the development of syntectonic granitoids and host rocks in the Camboriú region, Santa Catarina, Brazil // J. South Amer. Earth Sci. 2010. Vol. 29, N 3. P. 738–750.
26. Peternell M., Bitencourt M.F., Kruhl J.H. Combined quantification of anisotropy and inhomogeneity of magmatic rock fabrics — An outcrop scale analysis recorded in high resolution // J. Structur. Geol. 2011. Vol. 33, N 4. P. 609–623.
27. Pourgholam M.M. et al. Detection of geochemical anomalies using a fractal-wavelet model in Ipack area, Central Iran // J. Geochem. Explor. 2021. Vol. 220. P. 106–675.
28. Roberts S., Sanderson D.J., Gumiel P. Fractal analysis and percolation properties of veins // Geol. Soc. Lond. Spec. public. 1999. Vol. 155, N 1. P. 7–16.
29. Wang W., Zhao J., Cheng Q. Application of singularity index mapping technique to gravity/magnetic data analysis in southeastern Yunnan mineral district, China // J. Applied Geophysics. 2013. Vol. 92. P. 39–49.
30. Xiao F., Chen Z., Chen J. et al. A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification // Computers & Geosci. 2016. Vol. 90. P. 189–201.
31. Yakymchuk C. et al. Leucosome distribution in migmatitic paragneisses and orthogneisses: A record of self-organized melt migration and entrapment in a heterogeneous partially-molten crust // Tectonophysics. 2013. Vol. 603. P. 136–154.
32. Zuo R., Wang J. Fractal/multifractal modeling of geochemical data: A review // J. Geochemic. Explor. 2016. Vol. 164. P. 33-41.
Review
For citations:
Nikulin I.I., Kalashnikov A.O., Krylov I.O., Mikhailova J.A., Groshev N.Yu., Kadyrov R.I. Fractal analysis of the sulfide composition and structure of interspersed ores in picrite gabbro-dolerites of the Oktyabrsky deposit, Norilsk ore field. Moscow University Bulletin. Series 4. Geology. 2023;(1):60-74. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2023-63-1-60-74