Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Eocene seismicity and paleogeography of the Central Crimea

https://doi.org/10.33623/0579-9406-2022-5-68-77

Abstract

The article considers the results of a comprehensive study of the Cretaceous-Eocene deposits of the Central Crimea (Ak-Kaya mount.). The temperature and salinity of the formation of Maastrichtian and Eocene rocks have been determined, and a correlation has been made with the global climatic event EЕСO (Early Eocene Climate Optimum). The synchronicity of the formation of steep submeridional fractures and the basal horizon of the Eocene has been proved. Three major stages of deformation have been identified: pre-Eocene, Eocene, and post-Eocene. It is shown that the Eocene stage corresponds to the formation of paleoseismic dislocations during the main phase of tectonic activity in the Pontids (Eastern Turkey).

About the Authors

E. A. Lygina
Lomonosov Moscow State University
Russian Federation

Ekaterina A. Lygina

Moscow



N. V. Pravikova
Lomonosov Moscow State University
Russian Federation

Natalia V. Pravikova

Moscow



E. R. Chizhova
Lomonosov Moscow State University
Russian Federation

Ekaterina R. Chizhova

Moscow



T. Yu. Tveritinova
Lomonosov Moscow State University
Russian Federation

Tatiana Yu. Tveritinova

Moscow



E. V. Yakovishina
Lomonosov Moscow State University
Russian Federation

Elena V. Yakovishina

Moscow



A. M. Nikishin
Lomonosov Moscow State University
Russian Federation

Anatoly M. Nikishin

Moscow



M. V. Korotaev
Lomonosov Moscow State University
Russian Federation

Maksim V. Korotaev

Moscow



A. V. Tevelev
Lomonosov Moscow State University
Russian Federation

 

Aleksandr V. Tevelev

Moscow



E. A. Krasnova
Lomonosov Moscow State University, Moscow, Russia; Vernadsky Institute of Geochemistry and Analytical Chemistry RAS
Russian Federation

Elizaveta A. Krasnova

Moscow



V. L. Kosorukov
Lomonosov Moscow State University
Russian Federation

Vladimir L. Kosorukov

Moscow



E. N. Samarin
Lomonosov Moscow State University
Russian Federation

Eugeniy N. Samarin

Moscow



References

1. Бадулина Н.В., Яковишина Е.В., Габдуллин Р.Р. и др. Литолого-геохимическая характеристика и условия формирования верхнемеловых отложений Северного Перитетиса // Бюлл. МОИП. Отд. геол. 2016. Т. 91, вып. 4–5. С. 136–147.

2. Галимов Э.М. Геохимия стабильных изотопов углерода. М.: Недра, 1968. 226 с.

3. Курдин Н.Н. Структурные диаграммы (составление и основные приемы обработки; Учеб.-метод. пособие по курсу «Структурная геология и геологическое картирование». М.: Изд-во Моск. ун-та, 2000. 28 с.

4. Лунина О.В. Разломы и сейсмически индуцированные геологические процессы на юге Восточной Сибири и сопредельных территориях. Новосибирск: Изд-во СО РАН, 2016. 226 с.

5. Лыгина Е.А., Никишин А.М., Тверитинова Т.Ю. и др. Эоценовые палеосейсмодислокации горы Ак-Кая (Белогорский район, Крым) // Вестн. Моск. ун-та. Сер. 4. Геология. 2019. № 1. С. 44–54.

6. Никишин А.М., Коротаев М.В., Болотов С.Н., Ершов А.В. Тектоническая история Черноморского бассейна // Бюлл. МОИП. Отд. геол. 2001. Т. 76, вып. 3. С. 3–18.

7. Расцветаев Л.М. Парагенетический метод структурного анализа дизъюнктивных тектонических нарушений // Проблемы структурной геологии и физики тектонических процессов. Ч. 2. М.: Наука, 1987. С. 173–229.

8. Уилсон Дж.Л. Карбонатные фации в геологической истории / Пер. с англ. М.: Недра, 1980, 463 с.

9. Фор Г. Основы изотопной геологии. М.: Мир, 1989, 590 с.

10. Bauch D., Schlosser P., Fairbanks R.F. Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H2 18O // Progress Oceanogr. 1995. Vol. 35. P. 53–80.

11. Brezgunov V.S. Study of water exchange in sea-river water mixing zones using the isotopic composition-salinity diagram // Nuclear Geol. 1990. Vol. 4, N 1. P. 71–77.

12. Brezgunov V.S., Debolskii V.K., Nechaev V.V. et al. Characteristics of the formation of the oxygen isotope composition and salinity upon mixing of sea and river waters in the Barents and Kara Seas // Water Resour. (Transl. of Vodnye Resursy), 1982. N 9. P. 335–344; 1983, N 4. P. 3–14.

13. Chilingar G.V. Dependence on temperature of Ca/Mg ratio of skeletal structures of organisms and direct chemical precipitates out of sea water // Bull. S. Calif. Acad. Sci. 1962. Vol. 61. P. 45–60.

14. Epstein S., Mayeda T. Variations of 18О content of waters from natural sources // Geochim. et Cosmochim. Acta. 1953. Vol. 4, N 5. P. 213–224.

15. Létolle R., Martin J., Th omas A. et al. 18O abundance and dissolved silicate in the Lena delta and LaptevSea (Russia) // Marin. Chemistry. 1993. Vol. 43. P. 47–64.

16. Nikishin A.M., Okay A., Tüysüz O. et al. Th e Black Sea basins structure and history: New model based on new deep penetration regional seismic data. P. 2. Tectonic history and paleogeography // Marin. and Petrol. Geol. 2014. Vol. 59. P. 1–15. URL: http://dx.doi.org/10.1016/j.marpetgeo.2014.08.018

17. Westerhold T., Marwan N., Drury A.J. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years // Science. 2020. Vol. 369. P. 1383–1387.


Review

For citations:


Lygina E.A., Pravikova N.V., Chizhova E.R., Tveritinova T.Yu., Yakovishina E.V., Nikishin A.M., Korotaev M.V., Tevelev A.V., Krasnova E.A., Kosorukov V.L., Samarin E.N. Eocene seismicity and paleogeography of the Central Crimea. Moscow University Bulletin. Series 4. Geology. 2022;(5):68-77. (In Russ.) https://doi.org/10.33623/0579-9406-2022-5-68-77

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)