Model analysis of the climate change impact on the water balance of groundwater intake in the river valley
https://doi.org/10.33623/0579-9406-2019-4-45-54
Abstract
The results of groundwater intake simulation for Sudogodsky groundwater field under present and forecast climatic conditions for the next 25 years, which reflect the observed changes in meteorological characteristics, are considered. Comparison of the pumped water sources, obtained by simulation, showed that the predicted climate changes will lead to increasing of the reduced groundwater discharge to the river and to decreasing of the induced stream infiltration. Expected climatic changes cause a slight increase in the stream depletion under the influence of groundwater pumping, which will not have negative consequences, as it is compensated by an increase in the transit river flow. The research results reflect the scale of the observed and expected climate changes impact on the pumped water sources for river valley groundwater fields at the center of the European part of Russia.
About the Authors
S. O. GrinevskiyRussian Federation
Faculty of Geology, 119991, Moscow, GSP-1, Leninskiye Gory, 1
V. S. Sporyshev
Russian Federation
117105, Moscow, Warsaw highway, 39A
V. N. Samartsev
Russian Federation
Faculty of Geology, 119991, Moscow, GSP-1, Leninskiye Gory, 1
References
1. Болгов М.В., Коробкина Е.А., Трубецкова М.Д. и др. Современные изменения минимального стока на реках бассейна р. Волга // Метеорология и гидрология. 2014. № 3. С. 75–85.
2. Боревский Б.В., Дробноход Н.И., Язвин Л.С. Оценка запасов подземных вод. Киев: Вища школа, 1989. 407 с.
3. Гриневский С.О. Оценка инфильтрационного питания и ресурсов подземных вод на основе геогидрологических моделей: Автореф. докт. дисс. М., 2012.
4. Гриневский С.О., Поздняков С.П. Принципы региональной оценки инфильтрационного питания подземных вод на основе геогидрологических моделей // Водные ресурсы. 2010. Т. 37, № 5. С. 543–557.
5. Гриневский С.О., Поздняков С.П. Ретроспективный анализ влияния климатических изменений на формирование ресурсов подземных вод // Вестн. Моск. ун-та. Сер. 4. Геология. 2017. № 2. С. 42–50.
6. Джамалов Р.Г., Фролова Н.Л., Телегина Е.А. Изменение зимнего стока рек европейской части России // Водные ресурсы. 2015. Т. 42, № 6. С. 581–588.
7. Джамалов Р.Г., Фролова Н.Л., Рец Е.П., Бугров А.А. Особенности формирования современных ресурсов подземных вод европейской части России // Водные ресурсы. 2015. Т. 42, № 5. С. 457–466.
8. Поздняков С.П., Гриневский С.О., Дедюлина Е.А., Кореко Е.С. Чувствительность моделирования сезонного промерзания к расчетной модели теплопроводности снежного покрова // Снег и лед. 2019. № 1.
9. Шестаков В.М., Пашковский И.С., Сойфер А.М. Гидрогеологические исследования на орошаемых территориях. М.: Недра, 1982. 244 с.
10. Beigi E., Tsai F.T.C. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA // J. Hydrogeol. 2015. Vol. 23(4). Р. 789–806.
11. Clilverd H.M., White D.M., Tidwell A.C., Rawlins M.A. The sensitivity of northern groundwater recharge to climate change: a case study in northwest Alaska // J. Amer. Water Res. Assoc. 2011. P. 1–13.
12. Crosbie R.S., Scanlon B.R., Mpelasoka F.S. et al. Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA // Water Res. 2013. Vol. 49(7). P. 3936–3951.
13. Goderniaux P., Brouyere S., Wildemeersch S. et al. Uncertainty of climate change impact on groundwater reserves — Application to a chalk aquifer // J. Hydrology. 2015. Vol. 528. P. 108–121.
14. Grinevskiy S., Filimonova E., Sporyshev V. et al. Evapotranspiration capture and stream depletion due to groundwater pumping under variable boreal climate conditions: Sudogda River Basin, Russia // J. Hydrogeol. 2018. Vol. 26, Iss. 8. P. 2753–2767.
15. Grinevskiy S., Sporyshev V. Features of the balance structure formation of groundwater withdrawal and its effect on river flow at a subsoil water level drawdown // Water Res. 2019. Vol. 49, N 3. P. 319–331.
16. Harbaugh A., Banta E., Hill M., McDonald M. MODFLOW-2000, the U.S. Geological Survey modular ground-water model—User guide to modularization concepts and the ground-water flow process // U.S. Geol. Surv., Open File Rep. 2000. 92 p.
17. Prudic D.E. Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model // U.S. Geol. Surv., Open. File Rep. Nevada, Carson City, 1988. Р. 88–729.
18. Raftery A.E., Zimmer A., Frierson D.M.W. et al. Less than 2 degrees C warming by 2100 unlikely // Nature Climate Change. 2017. Vol. 7, Iss. 9. Р. 637–641.
19. Taylor R.G., Scanlon B., Doll P. et al. Ground water and climate change // Nature Climate Change. 2013. Vol. 3. P. 322–329.
20. Šimůnek J., Šejna M., Saito H. et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media. Ver. 4.08 // Prepr. Depart. of Environ. Sci. University of California Riverside. California, Riverside, 2009. 296 р.
Review
For citations:
Grinevskiy S.O., Sporyshev V.S., Samartsev V.N. Model analysis of the climate change impact on the water balance of groundwater intake in the river valley. Moscow University Bulletin. Series 4. Geology. 2019;(4):45-54. (In Russ.) https://doi.org/10.33623/0579-9406-2019-4-45-54