Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Evidence of cumulate crystallization and local development of the eclogite-facies metamorphism in the olivine gabbro of the Marun-Keu complex, Polar Urals, Russia

https://doi.org/10.33623/0579-9406-2019-2-94-103

Abstract

The paper presents the results of a detailed petrological study of olivine gabbro transformed to different extent by eclogite-facies metamorphism. Textural features of cumulate crystallization in the rock are presented. Plagioclases underwent the greatest alteration and replaced by finegrained aggregate during eclogite-facies metamorphism. Corona textures are developed along the boundaries of the plagioclase (felscic) domains at the contacts with (Fe,Mg)-minerals during eclogite facies event. The mineral thermobarometry and phase equilibrium modeling provide P-T metamorphic conditions in relatively narrow range of temperature 680±60 ᵒC and pressure Р=2,2±0.4 GPa. This is in a good agreement with the previously established conditions for the formation of eclogites and garnet-amphibole peridotite from the same complex.

About the Authors

Y. Y. Liu
Московский государственный университет имени М.В. Ломоносова
Russian Federation


A. L. Perchuk
Московский государственный университет имени М.В. Ломоносова; Институт экспериментальной минералогии РАН имени Д.С. Коржинского
Russian Federation


N. G. Zinovieva
Московский государственный университет имени М.В. Ломоносова
Russian Federation


References

1. Куликова К.В. Редкоземельные элементы в породах и минералах из эклогитов района Слюдяной Горки (хребет Марункеу, Полярный Урал) // Петрология и минералогия севера Урала и Тимана. Сыктывкар, 2005. С. 115–124.

2. Лю И., Перчук А.Л., Арискин А.А. Высокобарный метаморфизм в перидотитовом кумулате комплекса Марун-Кеу, Полярный Урал // Петрология. 2019. № 2. С. 136–157.

3. Перчук А.Л., Япаскурт В.О., Подлесский С.К. Условия формирования и динамика подъема эклогитов Кокчетавского массива (район горы Сулу-Тюбе) // Геохимия. 1998. № 9. С. 979–988.

4. Селятицкий А.Ю., Куликова К.В. Первые данные о проявлении UHP-метаморфизма на Полярном Урале // Докл. РАН. 2017. Т. 476, № 6. С. 681–684.

5. Удовкина Н.Г. Эклогиты Полярного Урала. М.: Наука, 1971. 191 с.

6. Удовкина Н.Г. Эклогиты СССР. М.: Наука, 1985. 286 с.

7. Уляшева Н.С., Ронкин Ю.Л. Химический состав и геодинамические обстановки формирования протолитов амфиболитов и гранатовых эклогитов марункеуского комплекса (Полярный Урал) // Изв. Коми НЦ УрО РАН. Сыктывкар, 2014. Т. 1. С. 71–79.

8. Шацкий В.С., Симонов В.А., Ягоутц Э., Козьменко О.А. и Куренков С.А. Новые данные о возрасте эклогитов Полярного Урала // Докл. РАН. 2000. Т. 371, № 4. С. 519–523.

9. Brey G.P., Köhler T. Geothermobarometry in four-phase lherCzolites II. New thermobarometers, and practical assessment of existing thermobarometers // Journal of Petrology. 1990. Vol. 31, N 6. P. 1353–1378.

10. Carswell D.A., Harley S.L. Mineral barometry and thermometry // In: Carswell D.A. (Ed.), Eclogite Facies Rocks, Blackie & Sous, Glasgow. 1990. P. 83–110.

11. Connolly J.A. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction Czone decarbonation // Earth and Planetary Science Letters. 2005. Vol. 236, N 1–2. P. 524–541.

12. Davydova V.V., Perchuk A.L., Stoeckhert B. Petrology of coronite from the Bergen Arcs Complex, Norway // Moscow University Geology Bulletin. 2009. Vol 64, N 3. P. 166–176.

13. Faryad S.W., Jedlicka R. & Collett S. Eclogite facies rocks of the Monotonous unit, clue to Variscan suture in the Moldanubian Zone (Bohemian Massif) // Lithos. 2013. 179. P. 353–363.

14. Glodny J., Austrheim H., Molina J.F. et al. Rb/Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia // Geochimica et Cosmochimica Acta. 2003. Vol. 67, N 22. P. 4353–4371.

15. Glodny J., Pease V., Montero P. et al. Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre-and early Uralian evolution of the northeastern European continental margin // Geological Society, London, Memoirs. 2004. Vol. 30, N 1. P. 87–105.

16. Griffin W.L., Heier K.S. Petrological implications of some corona structures // Lithos. 1973. Vol.86, N 4. P. 315–335.

17. Harley S.L. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene // Contributions to Mineralogy and Petrology. 1984. Vol.86, N 4. P. 359–373.

18. Holland T., Powell R. Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions // Amer. Mineral. 1996. Vol. 81, N 11–12. P. 1425–1437.

19. Holland T.J.B., Powell R. An internally consistent thermodynamic data set for phases of petrological interest // J. Metamorph. Geol. 1998. Vol. 16, N 3. P. 309–343.

20. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. Vol. 29, N 3. P. 333–383.

21. Larikova T.L., Zaraisky G.P. Experimental modelling of corona textures // J. Metamorph. Geol. 2009. Vol. 27, N 2. P. 139–151.

22. Lindsley D.H. Pyroxene thermometry // Amer. mineral. 1983. Vol 68, N 5–6. P. 477–493.

23. Liu Y.Y., Perchuk A.L., Philippot P. Eclogites from the Marun-Keu Complex, Polar Urals, Russia: a record of hot subduction and sub-isothermal exhumation // Geol. Soc. London, Spec. Publ. 2018. Vol. 474. P. SP474-6. DOI: 10.1144/SP474.6

24. Molina J.F., Austrheim H., Glodny J., Rusin A. The eclogites of the Marun–Keu complex, Polar Urals (Russia): fluid control on reaction kinetics and metasomatism during high P metamorphism // Lithos. 2002. Vol. 61, N 1. P. 55–78.

25. Morimoto N. Nomenclature of pyroxenes // Mineral. and Petrol. 1988. Vol 39, N 1. P. 55–76.

26. Nickel K.G., Green D.H. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds // Earth and Planet. Sci. Lett. 1985. Vol. 73, N 1. P. 158–170.

27. Perchuk A.L., Morgunova A.A. Variable P–T paths and HP-UHP metamorphism in a Precambrian terrane, Gridino, Russia: Petrological evidence and geodynamic implications // Gondwana Research. 2014. Vol. 25, N 2. P. 614–629.

28. Spry A. Metamorphic Textures. Elsevier Science. 2013. 358 p.

29. Takahashi E. Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29 N to 73 N // Technical Report of ISEI Okayama University. 1987. Series A 9. P. 1–14.

30. Taylor W.R. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherCzolite and garnet websterite // Neues Jahrb. f r Mineralogie-Abhandlungen. 1998. P. 381–408.

31. Wager L.R., Brown G.M., Wadsworth W.J. Types of igneous cumulates // Petrology. 1960. Vol. 1, N 1. P. 73–85.

32. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. mineral. 2010. Vol 95, N 1. P. 185–187.

33. Zhang R.Y, Liou J.G. Partial transformation of gabbro to coesite- bearing eclogite from Yangkou, the Sulu terrain, Eastern China // J. Metamorp. Geol. 1997. Vol 15, N 2. P. 183–202.


Review

For citations:


Liu Y.Y., Perchuk A.L., Zinovieva N.G. Evidence of cumulate crystallization and local development of the eclogite-facies metamorphism in the olivine gabbro of the Marun-Keu complex, Polar Urals, Russia. Moscow University Bulletin. Series 4. Geology. 2019;(2):94-103. (In Russ.) https://doi.org/10.33623/0579-9406-2019-2-94-103

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)