Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Zircons isotope dating and thermochronology of the migmatites from the Gondaray metamorphic complex of the Greater Caucasus

https://doi.org/10.33623/0579-9406-2020-4-30-44

Abstract

Results from isotope dating of the Greater Caucasus crystalline basement in the Elbrus subzone of the Main Caucasus Range inside of the HT gneiss-migmatite area of the Gondaray Metamorphic Complex is discussed herein. The measurements of the zircons isotope composition were performed on the ion microprobe SHRIMP-II at the CIR VSEGEI (St. Petersburg). All zircon crystals from the gneiss sample N 526 show chemical zoning and an old clastogenic core. Almost all U-Pb isotope dating points toile on the concordant line of the concordia diagram and show a wide age range from 320–1000 Ма, partially obtained from clastogenic grains of the zircon from the initial pelitic sediments. The youngest ages (320 Ма) belong to regenerating zones of the zircon grains recrystallized during stage of the anatexis and migmatization. The other part of the age range 540–1000 Ма belongs to detrital zircons from different magmatic sources that existed during accumulation of the proto-metamorphic sediments. Several clastogenic zircon grains show a Cambrian age, which is an evidence for the Early Paleozoic age of the metamorphic protolith. Traditionally the age of the Caucasus crystalline basement was suggested to be Precambrian. The ages of rim zones of the recrystallized zircons (320 Ма) have a direct correlation with postmetamorphic granite ages of the Greater Caucasus. It is shown by termochronological modeling that cooling of the Gondaray Metamorphic Complex during a retrogressive stage, from the temperature of migmatite crystallization (650 оС) to the moment of biotite K-Ar isotope system closure temperature (350 оС), was relatively fast (rate of cooling 8–10 оС/Ma) at subisobaric conditions and during a time range about 30–40 Ма.

About the Authors

V. Yu. Gerasimov
Fersman Mineralogical Museum of Russian Academy of Sciences; Geological Istitute of Russian Academy of Sciences
Russian Federation

119071, Moscow, Leninskii prospect, 18, 2;

119017, Moscow, Pyizhevskii per., 7, 1



V. A. Snezhko
Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation
199106, St. Petersburg, Sredny prospect, 74


J. Mosar
University of Fribourg
Switzerland

Department of Geosciences — Earth Sciences

Chemin du musée, 6, СH-1700, Fribourg



A. N. Pis’mennyii
PSC “Kavkazgeolseomka”
Russian Federation
Stavropol region, 357600, Essentuki, Kislovodskaya str., 203


N. L. Enna
PSC “Kavkazgeolseomka”
Russian Federation
Stavropol region, 357600, Essentuki, Kislovodskaya str., 203


A. A. Uliyanov
Lomonosov Moscow State University
Russian Federation
119991, Moscow, GSP-1, Leninskiye Gory, 1


References

1. Баранов Г.И., Кропачев С.М. Стратиграфия, магматизм и тектоника Большого Кавказа на докембрийском и палеозойском этапах развития // Геология Большого Кавказа. М.: Недра, 1976. С. 45–154.

2. Бибикова Е.В., Сомин М.Л., Красивская И.С. и др. U-Pb возраст ортогнейсов Главного Кавказского хребта // Изв. АН СССР. Сер. Геол. 1991. № 9. С. 23–34.

3. Гамкрелидзе И.П., Шенгелиа Д.М. Докембрийско-палеозойский региональный метаморфизм, гранитоидный магматизм и геодинамика Кавказа. М.: Научный мир, 2005. 460 с.

4. Герасимов В.Ю. Температурная эволюция метаморфизма и обратимость минеральных равновесий. М.: Наука, 1992. 129 с.

5. Герасимов В.Ю., Гаранин В.К., Письменный А.Н., Энна Н.Л. Новые данные о проявлении мезозойского магматизма в Бечасынской зоне Большого Кавказа и оценка возраста регионального метаморфизма // Вестн. Моск. ун-та. 2015. № 4. С. 62–73.

6. Герасимов В.Ю., Лебедев В.А., Аракелянц М.М., Письменный А.Н. Термохронологическое моделирование возраста метаморфизма андалузитовых сланцев Кавказа // Тез. докл. XVII Симп. по геохимии изотопов имени академика А.П. Виноградова. М.: ГЕОХИ, 2004. С. 61–62.

7. Герасимов В.Ю., Письменный А.Н., Энна Н.Л. Цирконометрия метагранитоидов кристаллиникума Большого Кавказа // Магматизм и метаморфизм в истории Земли. Мат-лы XI Всеросс. петрографического совещ. Екатеринбург: ИГГ УрО РАН, 2010. Т. 1. С. 167–168.

8. Герасимов В.Ю., Савко К.А. Геоспидометрия и температурная эволюция гранат-кордиеритовых метапелитов Воронежского кристаллического массива // Петрология. 1995. № 6. С. 563–577.

9. Ньютон Р.С. Флюиды гранулитовой фации метаморфизма. Взаимодействие флюид порода при метаморфизме / Под ред. Дж. Уолтера, Б. Вуда. М.:. Мир, 1989. 249 с.

10. Перчук Л.Л. Глубинные флюидные потоки и рождение гранитов // Соросовский образ. журн. 1997. № 6. С. 56–63.

11. Шенгелиа Д.М., Кориковский С.П., Чичинадзе Г.Л. и др. Петрология метаморфических комплексов Большого Кавказа. М.: Наука, 1991. 232 с.

12. Berger G.W., York D. Geothermometry from 40Ar/39Ar dating experiments // Geochim. et Cosmochim. Acta, 1981. Vol. 45. P. 795–811.

13. Dodson M.H. Closure temperature in cooling geochronological and petrological systems // Contrib. Mineral. and Petrol. 1973. Vol. 40, N 3. P. 259–274.

14. England P.C., Tompson A.B. Pressure-temperature-time paths of regional metamorphism: heat transfer during the evolution of regions of thickened continental crust // J. Petrol. 1984. Vol. 25. P. 894–928.

15. Gerasimov V.Yu., Pismennyi A.N. Thermochronological modeling of the Greater Caucasus metamorphism age // Geophys. Res. Abstr. EGU. 2005. Vol. 7. 07853.

16. Korikovsky S.P., Shengelia D.M., Potapenko Yu.Ya. et al. The map of metamorphic facies of the crystalline basement of the Greater Caucasus; Scale 1:200 000. Moscow; Tbilisi: Metsniereba, 1995.

17. Lee J.K.W., Williams I.S., Ellis D.J. Pb, U and Th diffusion in natural zircon // Nature. 1997. Vol. 390. P. 159–162.

18. Ludwig K.R. User’s Manual for ISOPLOT/EX, Version 2.10. A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 1999. N 1a. USA, Berkeley, 22 p.

19. Ludwig K.R. SQUID 1.00. User’s Manual // Berkeley Geochronology Center Spec. Publ. 2000. N 2. USA, Berkeley.

20. Philippot P., Perchuk A.L., Blichert-Toft J. et al. Lu-Hf and Ar-Ar geochronology confirms extreme rate of subduction zone metamorphism deduced from geospeedometry // Tectonophys. 2001. Vol. 342. Р. 23–38.

21. Pollack H.N., Chapman D.S. On the regional variation of heat flow, geotherms, and lithospheric thickness // Tectonophys. 1977. Vol. 38. P. 279–296.

22. Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism // Chem. Geol. 2002. Vol. 184. P. 123–138.

23. Somin M.L. Pre-Jurassic basement of the Greater Caucasus: Brief overview // Turkish J. Earth Sci. 2011.Vol. 20. P. 545–610.

24. Williams I.S. U-Th-Pb Geochronology by ion microprobe // Application of microanalytical techniques to understanding mineralizing processes // Rev. Econ. Geol. 1998. Vol. 7. P. 1–35.


Review

For citations:


Gerasimov V.Yu., Snezhko V.A., Mosar J., Pis’mennyii A.N., Enna N.L., Uliyanov A.A. Zircons isotope dating and thermochronology of the migmatites from the Gondaray metamorphic complex of the Greater Caucasus. Moscow University Bulletin. Series 4. Geology. 2020;(4):30-44. (In Russ.) https://doi.org/10.33623/0579-9406-2020-4-30-44

Views: 230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)