New data on chemical composition of lithium mica from granitic pegmatites of Murzinka pluton (Central Urals)
https://doi.org/10.33623/0579-9406-2020-3-81-88
Abstract
Mica samples from granitic pegmatites of Mokrusha and Ministerskaya mines, Murzinka pluton, Central Urals are polylithionite, sokolovaite, trilithionite, Li-bearing muscovite, and annite–phlogopite series. Chromium and magnesium, uncommon elements for light mica are detected in samples from both mines, indicates host-rock contamination of pegmatites. The low values K/Rb ratio and Ta/Nb ratio define a very high degree of pegmatite differentiation of both mines.
About the Authors
T. A. GvozdenkoRussian Federation
119991, Moscow, GSP-1, Leninskiye Gory, 1;
125009, Moscow, Mokhovaya str., 11, korp. 11
I. A. Baksheev
Russian Federation
119991, Moscow, GSP-1, Leninskiye Gory, 1
E. I. Gerasimova
Russian Federation
125009, Moscow, Mokhovaya str., 11, korp. 11
D. A. Khanin
Russian Federation
142432, Moscow district, Chernogolovka, Academika Ossipyan, str. 4;
119991, Moscow, GSP-1, Leninskiye Gory, 1
M. V. Chervyakovskya
Russian Federation
620016, Ekaterinburg, Akademika Vonsovskogo str., 15
V. O. Yapaskurt
Russian Federation
119991, Moscow, GSP-1, Leninskiye Gory, 1
References
1. Гурков И.А. Пегматитовая жила Мокруша // Уральский геол. журн. 2000. № 6 (18). С. 47–98.
2. Канонеров А.А., Чудинова Н.Д. Мурзинские самоцветные копи (путеводитель и кадастр минералов). 2-е изд. Уральская летняя минералогическая школа. Екатеринбург: Изд. УГГГА, 2000. 41 с.
3. Попов В.А., Попова В.И. Копь Мокруша: Очерк истории освоения и минералогия. Миасс: ИМин УрО РАН, 1999. 71 с.
4. Смертенко В.М., Корендясев Г.А., Канторович В.И., Ворожев Е.С. Геологическое строение месторождения самоцветов Мокруша на Среднем Урале // Драгоценные и цветные камни. М.: Наука, 1980. С. 117–135.
5. Таланцев А.С. Камерные пегматиты Урала. М.: Наука, 1988. 144 с.
6. Ферсман А.Е. Избранные труды. Т. 7. Драгоценные и цветные камни СССР. М.: Изд-во АН СССР, 1962. 692 с.
7. Ферштатер Г.Б., Бородина Н.С. Мурзинский массив на Среднем Урале как пример межформационного гранитного плутона: магматические источники, геохимическая зональность, особенности формирования // Литосфера. 2018. № 18(5). С. 672–691.
8. Andersen T., Graham S., Sylvester A.G. Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: new results from laser-ablation ICPMS U-Pb dating of zircon // Geol. Surv. Norway Bull. 2007. Vol. 447. P. 17–31.
9. Černý P., Meintzer R.E., Anderson A.J. Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms // Canad. Mineral. 1985. Vol. 23. P. 381–421.
10. Ercit T.S., Groat L.A., Gault R.A. Granitic pegmatites of the O’Grady batholith, N.W.T., Canada: a case study of the evolution of the elbaite subtype of rare-element granitic pegmatite // Canad. Mineral. 2003. Vol. 41. P. 117–137.
11. Lichtervelde van M., Gregoire M., Linnen R.L. et al. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada // Contrib. Mineral. Petrol. 2008. Vol. 155. P. 791–806.
12. Marchal K.L., Simmons W.B., Falster A.U. et al. Geochemistry, mineralogy, and evolution of Li-Al micas and feldspars from the Mount Mica pegmatite, Maine, USA // Canad. Mineral. 2014. Vol. 52. P. 221–233.
13. Montero P., Bea F., Gerdes A. et al. Single-zircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals. A perspective on the timing of deformation and granite generation // Tectonophysics. 2000. N 317. P. 93–108.
14. Potter E.G., Taylor R.P., Jones P.C. et al. Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, Opatica subprovince, Quebec, Canada // Canad. Mineral. 2009. Vol. 47(2). P. 337–349.
15. Roda-Robles E., Pesquera, A., Gil-Crespo P.P. et al. Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain) // Europ. J. Mineral. 2006. Vol. 18. P. 369–377.
16. Rosing-Schow N., Muller A., Friis H. A comparison of the mica geochemistry of the pegmatite fields in southern Norway // Canad. Mineral. 2018. Vol. 56. P. 463–488.
17. Steffenssen G. The distribution and enrichment of scandium in garnets from the Tørdal pegmatites, and its economic implications: Master thesis. Department of Geosci. Faculty of Mathematics and Natural Sciences University of Oslo, 2018. 105 p.
18. Tischendorf G., Gottesmann B., Förster H.-J. et al. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation // Mineralogical Magazine. 1997. Vol. 61(6). P. 809–834.
19. Wang R.C., Hu H. Zhang A.C., Fontan F. et al. Cs-dominant polylithionite in the Koktokay #3 pegmatite, Altai, NW China: in situ microcharacterization and implication for the storage of radioactive cesium // Contrib. Mineral. Petrol. 2006. Vol. 153. P. 355–367.
Review
For citations:
Gvozdenko T.A., Baksheev I.A., Gerasimova E.I., Khanin D.A., Chervyakovskya M.V., Yapaskurt V.O. New data on chemical composition of lithium mica from granitic pegmatites of Murzinka pluton (Central Urals). Moscow University Bulletin. Series 4. Geology. 2020;(3):81-88. (In Russ.) https://doi.org/10.33623/0579-9406-2020-3-81-88