Scheelite from Kekura gold deposit, Western Chukchi peninsula: Trace elements and fluid Inclusions
https://doi.org/10.33623/0579-9406-2020-1-51-59
Abstract
Scheelite from the Kekura gold deposit in the Western Chukchi Peninsula is reported for the first time. Three generations of the mineral have been identified. According to the LA–ICP–MS data, the Mo content in scheelite does not exceed 0,2 ppm and total REE ranges from 20 to 150 ppm. The REE distribution patterns of all three scheelite generations have a strong positive Eu anomaly (Eu/Eu*=4,455,6), which is typical of scheelite from intrusion-related and orogenic gold deposits. The high Sr concentration (1300–12000 ppm) is characteristic of the hypabyssal intrusion-related Au deposits. According to the fluid inclusion data, the minimal crystallization temperature of scheelite and associated quartz is 200–250 °С.
About the Authors
E. V. NagornayaRussian Federation
119991, Moscow, Kosygin st., 19;
119991, GSP-1, Leninskiye Gory, 1
I. A. Baksheev
Russian Federation
119991, GSP-1, Leninskiye Gory, 1
M. O. Anosova
Russian Federation
119991, Moscow, Kosygin st., 19
M. M. Komarova
Russian Federation
119017, Moscow, Staromonetny lane, 35
Yu. N. Khabibullina
Russian Federation
Lomonosov Moscow State University
V. O. Yapaskurt
Russian Federation
Lomonosov Moscow State University
A. E. Kozionov
Russian Federation
119991, Moscow, Leninsky prospect, 65
M. M. Volkova
Russian Federation
119991, Moscow, Kosygin st., 19
References
1. Бортников Н.С., Гамянин Г.Н., Викентьева О.В. и др. Состав и происхождение флюидов в гидротермальной системе Нежданинского золоторудного месторождения (Саха-Якутия, Россия) // Геология рудн. месторождений. 2007. Т. 49, № 2. С. 99–145.
2. Викентьева О.В. Распределение РЗЭ в шеелите золоторудных месторождений // Тез. годичного собрания РМО. СПб., 2006. С. 123–124.
3. Спиридонов Э.М. Инверсионная плутоногенная золото-кварцевая формация каледонид Севера Центрального Казахстана // Геология. рудн. месторождений. 1995. Т. 37, № 3. С. 179–207.
4. Спиридонов Э.М., Соколова Н.Ф., Назьмова Г.Н. и др. Типохимизм шеелита разноглубинных плутоногенных гидротермальных месторождений золота // Докл. РАН. 1999. Т. 364, № 3. С. 363–365.
5. Тихомиров П.Л., Прокофьев В.Ю., Калько И.А. и др. Постколлизионный магматизм Западной Чукотки и раннемеловая тектоническая перестройка северо-востока Азии // Геотектоника. 2017. № 2. С. 32–54.
6. Baksheev I.A., Prokof’ev V.Yu., Ustinov V.I. Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, Central Urals: evidence from fluid inclusions and stable isotopes // Geochem. Intern. 2001. Vol. 39, suppl. 2. P. S129–S144.
7. Brugger J., Bettiol A.A., Costa S. et al. Mapping REE distribution in scheelite using luminescence // Mineral. Mag. 2000. Vol. 64, N 5. P. 891–903.
8. Dostal J., Kontak, D.J., Chatterjee A.K. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications // Mineral. Petrol. 2009. Vol. 97. P. 95–109.
9. Fu Y., Sun X., Zhou H. et al. In-situ LA–ICP–MS trace elements analysis of scheelites from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China and its metallogenic implications // Ore Geol. Rev. 2017. Vol. 80. P. 828–837.
10. Ghaderi M., Palin J.M., Campbell I.H. et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia // Econ. Geol. 1999. Vol. 94, N 3. P. 423–437.
11. Hodgson C.J. The structure of shear-related, vein-type gold deposits: A review // Ore Geol. Rev. 1989. Vol. 4, N 3. P. 231–273.
12. Jochum K.P., Nohl U., Herwig K. et al. GeoReM: a new geochemical database for reference materials and isotopic standards // Geostand. Geoanal. Res. 2005. Vol. 29, N 3. P. 333–338.
13. Kempe U., Oberthür Th. Physical and geochemical characteristics of scheelite from gold deposits. a reconnaissance study // Proc. IV Biennial SGA Meeting. Turku, Finland, Rootterdam: Balkema, 1997. 209 p.
14. Mao J., Konopelko D., Seltmann R. et al. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan // Econ. Geol. 2004. Vol. 99, N 8. P. 1771–1780.
15. Martin R.D. Syenite-hosted gold mineralization and hydrothermal alteration at the Young Davidson deposit, Matachewan, Ontario [Электрон. ресурс]: Univ. Waterloo, Ontario, Canada, 2012. 172 p. URL: https://uwspace.uwaterloo.ca/bitstream/handle/10012/6677/Martin_Ryan.pdf (дата обращения: 26.04.2019).
16. Poulin R.S., Kontak D.J., McDonald A. et al. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry // Can. Mineral. 2018. Vol. 56, N 3. P. 265–302.
17. Ribeiro-Rodrigues L.C., de Oliveira C.G., Friedrich G. The Archean BIF-hosted Cuiabá gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil // Ore. Geol. Rev. 2007. Vol. 32, iss. 3–4. P. 543–570.
18. Roberts S., Palmer M.R., Waller L. Sm–Nd and REE characteristics of tourmaline and scheelite from the Björkdal gold deposit, northern Sweden: evidence of an intrusion-related gold deposit // Econ. Geol. 2006. Vol. 101. P. 1415–1425.
19. Sciuba M., Beaudoin G., Hout F. Texture, cathodoluminescence and trace elements composition of scheelite, indicator of orogenic gold deposits [Электрон. ресурс] // 14th Technological forum, Val D’Or, Canada, 2016. URL: http://www.consorem.ca/presentation_pub/forum_techno_2016/presentations_forumt_016/13H50_SCIUBA_DIVEX_2016.pdf (дата обращения: 06.05.2019).
20. Song G., Qin K., Li G. et al. Scheelite elemental and isotopic signatures: implications for the genesis of skarn-type W–Mo deposits in the Chizhou area, Anhui Province, eastern China // Amer. Mineral. 2014. Vol. 99, N 2–3. P. 303–317.
21. Sun K., Chen B. Trace elements and Sr–Nd isotopes of scheelite: implications for the W–Cu–Mo polymetallic mineralization of the Shimensi deposit, South China // Amer. Mineral. 2017. Vol. 102. P. 1114–1128.
22. Sun S.S., MсDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Saunders A.D., Norry M.J. (eds.). Magmatism in the ocean basins. Geol. Soc. London. Spec. Publ. 1989. Vol. 42, iss. 1. P. 313–345.
23. Sun X., Zhang Y., Xiong D. et al. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China // Ore Geol. Rev. 2009. Vol. 36. P. 235–249.
24. Tshibubudze A. Integrated strato-tectonic, U-Pb geochronology and metallogenic studies of the Oudalan-Gorouol volcano-sedimentary Belt (OGB) and the Gorom-Gorom granitoid terrane (GGGT), Burkina Faso and Niger, West Africa [Электрон. ресурс] PhD thesis. Univ. Wittwatersrand, Johannesburg, 2015. 299 p. URL: http://www.tectonique.net/waxi_theses/2015_Tshibubudze.pdf (дата обращения: 27.04.2019).
25. Van Achterbergh E., Ryan C.G., Jackson, S.E. et al. Data reduction software for LA–ICP–MS: appendix // Sylvester P.J. (ed.), Laser Ablation–ICP–Mass Spectrometry in the Earth Sciences: Principles and Applications. Mineralogical Association of Canada, Ottawa, Ontario, Canada, 2001. Vol. 29. P. 239–243.
26. Zhu Y.-N., Peng J.-T. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au–Sb–W deposit, western Hunan, South China // Ore Geol. Rev. 2015. Vol. 65, pt 1. P. 55–69.
Review
For citations:
Nagornaya E.V., Baksheev I.A., Anosova M.O., Komarova M.M., Khabibullina Yu.N., Yapaskurt V.O., Kozionov A.E., Volkova M.M. Scheelite from Kekura gold deposit, Western Chukchi peninsula: Trace elements and fluid Inclusions. Moscow University Bulletin. Series 4. Geology. 2020;(1):51-59. (In Russ.) https://doi.org/10.33623/0579-9406-2020-1-51-59