Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Utilization and processing of coal ash and slag waste in the context of achieving sustainable development goals: experience of Russia and China

https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-117-127

Abstract

The article considers coal ash and slag waste generated from coal combustion at thermal power plants as a promising technogenic resource. A comparative analysis of approaches to the utilization and processing of ash and slag waste (ASW) in China and Russia is presented. The high level of ASW integration into production chains in China is highlighted, due to well-developed regulatory frameworks, technological innovations, and integration with consuming industries. In Russian practice, despite existing initiatives and strategic documents, the ASW processing rates remain low. Key barriers are identified, including the territorial imbalance between waste generation sources and demand regions, insufficient economic incentives, and logistical difficulties. The need to adapt Chinese experience taking into account Russian specificities is noted.

About the Authors

D. B. Bembeev
Lomonosov Moscow State University
Russian Federation

Danzan B. Bembeev.

Moscow



A. A. Samsonov
Lomonosov Moscow State University
Russian Federation

Alexey A. Samsonov.

Moscow



A. V. Bobrov
Lomonosov Moscow State University
Russian Federation

Andrey V. Bobrov.

Moscow



A. S. Voronov
Lomonosov Moscow State University
Russian Federation

Alexander S. Voronov.

Moscow



M. V. Kudina
Shenzhen MSU-BIT University; Lomonosov Moscow State University
Russian Federation

Marianna V. Kudina.

Shenzhen, China; Moscow, Russia



References

1. Ассоциация развития вторичного использования сырья (АРВИС). Официальный сайт. URL: https://arvis.online/ (дата обращения: 07.05.2025).

2. Годовой отчет по предотвращению загрязнения окружающей среды твердыми отходами в крупных и средних городах Китая (2014-2017). URL: http://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz/ (дата обращения: 05.05.2025). (На кит. яз.)

3. Годовой отчет по предотвращению загрязнения окружающей среды твердыми отходами в крупных и средних городах Китая (2018-2020). URL: http://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz/ (дата обращения: 05.05.2025). (На кит. яз.)

4. Завальный П.А. Зарубежный опыт использования золошлаковых отходов угольных ТЭС применим в России // Фракция «ЕДИНАЯ РОССИЯ» в Государственной Думе. 2019. 18 февр. URL: https://er-gosduma.ru/news/pavel-zavalnyy-zarubezhnyy-opyt-ispolzovaniya-zoloshlakovykh-otkhodov-ugolnykh-tes-primenim-v-rossii/ (дата обращения: 07.05.2025).

5. Закон КНР о предотвращении загрязнения окружающей среды твердыми отходами 29.04.2020. URL: http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm (дата обращения: 05.05.2025). (На кит. яз.)

6. Закон КНР о содействии циклической экономике. 29.08.2008. URL: http://www.gov.cn/flfg/2008-08/29/content_1084355.htm (дата обращения: 05.05.2025). (На кит. яз.)

7. Закон КНР о содействии чистому производству. 01.03.2012. URL: http://www.gov.cn/flfg/2012-03/01/content_2079732.htm (дата обращения: 05.05.2025). (На кит. яз.)

8. Закон КНР об охране окружающей среды. 25.04.2014. URL: http://www.gov.cn/zhengce/2014-04/25/content_2666434.htm (дата обращения: 05.05.2025). (На кит. яз.)

9. Золотова И.Ю. Начало «золошлакового» века: технологический суверенитет // Российская энергетическая неделя. 2024. URL: https://rusenergyweek.com/news/nachalo-%C2%ABzoloshlakovogo%C2%BB-veka-tehnologicheskij-suverenitet/ (дата обращения: 08.05.2025).

10. Золотова И.Ю. Риски сохранения текущей системы утилизации продуктов сжигания твердого топлива угольных ТЭС в России // Стратегические решения и риск-менеджмент. 2020. Т. 11, No. 2. С. 172-181.

11. Леонтьева Л.С., Воронов А.С., Барабошкин К.Е. и др. Достижение национальных целей развития России как фактор обеспечения национальной безопасности. МИР. (Модернизация. Инновации. Развитие). 2024;15(4):640-658

12. Максимов А. В 17 российских регионах ведется разработка программ утилизации продуктов сжигания угля на ТЭС и в котельных. Министерство энергетики (02.03.2023) РФ. URL: https://www.minenergo.gov.ru/press-center/news-and-events?news-item=andrey-maksimov-v-17-rossiyskikh-regionakh-vedyetsya-razrabotka-programm-utilizatsii-produktov-szhiganiya-uglya-na-tes-i-kotelnykh (дата обращения: 07.05.2025)

13. Объявление Министерства промышленности и информатизации КНР: № 26, 2018. 15.05.2018. URL: https://www.miit.gov.cn/zwgk/zcwj/wjfb/gg/art/2020/art_ace4b98d05fb4912a137b0347e09de73.html (дата обращения: 05.05.2025). (На кит. яз.)

14. Политика предотвращения загрязнений на тепловых электростанциях: Объявление № 1, 2017. 10.01.2017. URL: http://www.mee.gov.cn/gkml/hbb/bgg/201701/t20170117_394809.htm (дата обращения: 05.05.2025). (На кит. яз.)

15. Порядок комплексного использования золы-уноса (Приказ № 19). 17.01.2013. URL: http://www.gov.cn/gzdt/att/att/site1/20130117/782bcb9a8be91261e0b001.pdf (дата обращения: 05.05.2025). (На кит. яз.)

16. Цели в области устойчивого развития. Официальный сайт Организации объединенных наций. URL: https://www.un.org/sustainabledevelopment/ru/sustainable-consumption-production (дата обращения 07.05.2025)

17. Энергетическая стратегия Российской Федерации на период до 2035 года от 9 июня 2020 г. No. 1523-р // Министерство энергетики Российской Федерации. URL: http://static.government.ru/media/files/w4sigFOiDjGVDYT4IgsApssm6mZRb7wx.pdf (дата обращения: 07.05.2025)

18. Ainsworth C.C., Mattigod S.V., Rai D., Amonette J.E. Detailed physical, chemical, and mineralogical analyses of selected coal and oil combustion ashes. Palo Alto, CA: Electric Power Research Institute, 1993.

19. ASTM E2277-03: Standard Guide for Design and Construction of Coal Ash Structural Fills. ASTM International. 2023.

20. Bergeson K.L., Schlorholtz S., Demirel T. Development of a rational characterization method for Iowa fly ash. Final report. Iowa Department of Transportation, ISU-ERI 86-450, 1988.

21. Davison R.L., Natusch D.F.S., Wallace J.R., Evans C.A. Trace elements in fly ash: dependance of concentration on particle size // Environmental Science and Technology. 1974. Vol. 8. P. 1107-1112.

22. Diamond S. On the glass present in low-Ca and high-Ca fly ash // Cement and Concrete Research. 1984. Vol. 13. P. 459-464.

23. Enders M. Microanalytical characterization (AEM) of glassy spheres and anhydrite from a high-calcium lignite fly ash from Germany // Cement and Concrete Research. 1995. Vol. 25. P. 1369-1377.

24. Fang D., Chen B., Hubacek K., et al. Clean air for some: unintended spillover effects of regional air pollution policies // Science Advances. 2019. Vol. 5. Article eaav4707. DOI: 10.1126/sciadv.aav4707.

25. Fishman N.S., Rice C.A., Breit G.N., Johnson R.D. Sulfur-bearing coatings on fly ash from a coal-fired power plant: composition, origin, and influence on ash alteration // Fuel. 1999. Vol. 78. P. 187-196.

26. Flagan R.C., Friedlander S.K. Particle formation in pulverized coal combustion: a review. Paper presented at the Eighty-Second National Meeting of the American Institute of Chemical Engineers. Atlantic City, NJ, 1976.

27. Gieri R., Carleton L.E., Lumpkin G.R. Micro- and nanochemistry of fly ash from a coal-fired power plant // American Mineralogist. 2003. Vol. 88. P. 1853-1865.

28. Helmuth R. Fly ash in cement and concrete. Skokie, IL: Portland Cement Association, 1987.

29. Hemmings R.T., Berry E.E. On the glass in coal fly ashes: recent advances // Materials Research Society Symposium Proceedings. 1988. Vol. 113. P. 3-38.

30. Hemmings R.Z., Berry E.E. Speciation in size and density fractionated fly ash // Materials Research Society Symposium Proceedings. 1986. Vol. 65. P. 91-104.

31. Hessley R.K., Reasoner J.W., Riley J.T. Coal science: an introduction to chemistry technology and utilization. New York, NY: John Wiley & Sons, 1986.

32. Hubbard F.H., McGill R.J., Dhir R.K., Ellis M.S. Clay and pyrite transformations during ignition of pulverized coal // Mineralogical Magazine. 1984. Vol. 48. P. 251-256.

33. Kaakinen J.W., Jorden R.M., Lawasani M.H., West R.E. Trace element behavior in coal-fired power plant // Environmental Science and Technology. 1975. Vol. 9. P. 862-869.

34. Katrinak K.A., Zygarlicke C.J. Size-related variations in coal fly ash composition as determined using automated scanning electron microscopy // Fuel Processing Technology. 1995. Vol. 44. P. 71-79.

35. Li Q., Xu S., Gu Y.Y., et al. Present status and suggestions on the standard system of ecology and environment of fly ash in China // Journal of Environmental Engineering Technology. 2023. Vol. 13. No. 1. P. 438-446.

36. Linton R.W., Williams P., Evans C.A., Natusch D.R.S. Determination of the surface predominance of toxic trace elements in airborne particles by ion microprobe mass spectrometry and Auger electron spectroscopy // Analytical Chemistry. 1977. Vol. 49. P. 1514-1521.

37. Lu C.F., Wang W., Li Q. T., et al. Effects of micro-environmental climate on the carbonation depth and the pH value in fly ash concrete // Journal of Cleaner Production. 2018. Vol. 181. P. 309-317.

38. Luo K., Ren D., Xu L., et al. Fluorine content and distribution pattern in Chinese coals // International Journal of Coal Geology. 2004. Vol. 57. P. 143-149.

39. Luo Y.P., Wang L.J. Research on non-steam-cured and non-fired fly-ash thermal insulating materials // Journal of China University of Mining and Technology. 2008. Vol. 18. P. 116-121.

40. McCarthy G.J. X-ray powder diffraction for studying the mineralogy of fly ash // Materials Research Society Symposium Proceedings. 1988. Vol. 113. P. 75-86.

41. Miller R.N., Given P.H. The association of major, minor, and trace inorganic elements with lignites. I. Experimental approach and study of a North Dakota lignite // Geochimica et Cosmochimica Acta. 1986. Vol. 50. P. 2033-2043.

42. Mo L., Zhang F., Panesar D.K., Deng M. Development of low-carbon cementitious materials via carbonating Portland cement-fly ash-magnesia blends under various curing scenarios: a comparative study // Journal of Cleaner Production. 2017. Vol. 163. P. 252-261.

43. Peng B., Guo D., Qiao H., et al. Bibliometric and visualized analysis of China's coal research 2000-2015 // Journal of Cleaner Production. 2018. Vol. 197. P. 1177-1189.

44. Qi L., Xu J., Liu K. Porous sound-absorbing materials prepared from fly ash // Environmental Science and Pollution Research. 2019. Vol. 26. P. 22264-22272.

45. Qian J.C., Lachowski E.E., Glasser F.P. Microstructure and chemical variation in Class F fly ash glass // Materials Research Society Symposium Proceedings. 1988. Vol. 113. P. 45-53.

46. Qian J.C., Lachowski E.E., Glasser F.P. The microstructure of National Bureau of Standards reference fly ashes // Materials Research Society Symposium Proceedings. 1989. Vol. 136. P. 77-85.

47. Shang J., Dai J. G., Zhao T.J., et al. Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag // Journal of Cleaner Production. 2018. Vol. 203. P. 746-756.

48. Shi C., Jiménez A.F., Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement // Cement and Concrete Research. 2011. Vol. 41. P. 750-763.

49. Shi Y., Li Y., Tang Y., et al. Life cycle assessment of autoclaved aerated fly ash and concrete block production: a case study in China // Environmental Science and Pollution Research. 2019. Vol. 26. P. 25432-25444.

50. Smith R. D. The trace element chemistry of coal during combustion and the emissions from coal-fired plants // Progress in Energy and Combustion Science. 1980. Vol. 6. P. 53-119.

51. Smith R.D., Campbell J.A., Nielson K.K. Concentration dependence upon particle size of volatilized elements in fly ash // Environmental Science and Technology. 1979. Vol. 13. P. 553-558.

52. Soroczak M.M., Eaton H.C., Tittlebaum M.E. An ESCA and SEM study of changes in the surface composition and morphology of low-calcium coal fly ash as a function of aqueous leaching // Materials Research Society Symposium Proceedings. 1987. Vol. 86. P. 37-47.

53. Su Y., Fang H. Research on fly ash policy in China // Clean Coal Technology. 2016. Vol. 22(4). P. 52-55.

54. Summers D.V., Rupp G.L., Gherini S.A. Physical-chemical characteristics of utility solid wastes. Palo Alto, CA: Electric Power Research Institute, EA-3236, 1983.

55. Teixeira E.R., Mateus R., Camoes A.F., et al. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material // Journal of Cleaner Production. 2016. Vol. 112. P. 2221-2230.

56. Tikalsky P.J. The effects of fly ash on the sulfate resistance of concrete. PhD dissertation. University of Texas at Austin, 1989.

57. Valkovic V. Trace elements in coal: volumes I and II. Boca Raton, FL: CRC Press, 1983.

58. Van der Sloot H.A., Nieuwendijk B.J. T. Release of trace elements from surface-enriched fly ash in seawater // Wastes in the Ocean. 1985. Vol. 4. P. 449-465.

59. Wang D., Wan K., Yang J. Measurement and evolution of eco-efficiency of coal industry ecosystem in China // Journal of Cleaner Production. 2019. Vol. 209. P. 803-818.

60. Wang L., Sun H., Sun Z., Ma E. New technology and application of brick making with coal fly ash // Journal of Material Cycles and Waste Management. 2016. Vol. 18. P. 763-770.

61. Wu B., Ci L.J. Landscape change and desertification development in the Mu Us Sandland, Northern China // Journal of Arid Environments. 2002. Vol. 50. P. 429-444.

62. Wu E.J., Chen K.Y. Chemical form and leachability of inorganic trace elements in coal ash. Palo Alto, CA: Electric Power Research Institute, EA-5115, 1987.

63. Wu J., Bai G.L., Zhao H.Y., Li X. Mechanical and thermal tests of an innovative environment-friendly hollow block as self-insulation wall materials // Construction and Building Materials. 2015. Vol. 93. P. 342-349.

64. Xu S., Wang J., Jiang Q., Zhang S. Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures // Journal of Cleaner Production. 2016. Vol. 119. P. 118-127. DOI: 10.1016/j.jclepro.2016.01.069

65. Yao Z.T., Xia M.S., Sarker P.K., Chen T. A review of the alumina recovery from coal fly ash, with a focus in China // Fuel. 2014. Vol. 120. P. 74-85.

66. Zang W.C., Wang F. Adhere to green development and promote industrial solid waste management and utilization // Environmental Protection. 2018. Vol. 46. No. 16. P. 12-16. (in Chinese).

67. Zhuang X.Y., Chen L., Komarneni S., et al. Fly ash-based geopolymer: clean production, properties and applications // Journal of Cleaner Production. 2016. Vol. 125. P. 253-267.


Review

For citations:


Bembeev D.B., Samsonov A.A., Bobrov A.V., Voronov A.S., Kudina M.V. Utilization and processing of coal ash and slag waste in the context of achieving sustainable development goals: experience of Russia and China. Moscow University Bulletin. Series 4. Geology. 2025;64(5):117-127. (In Russ.) https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-117-127

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)