Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Methodical features of field and laboratory dielectric permittivity measuring techniques for sand-clay ground

https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-158-168

Abstract

Information about the dielectric permittivity of deposits can be useful in the interpretation of GPR data, particularly in the context of sandy-clay ground. Among the methods for measuring electromagnetic parameters, greater preference is given to the Time Domain Reflectometry (TDR) method due to its ability to perform in situ measurements while preserving the natural density and moisture content of the deposits. However, its application requires open ground, such as a trench or a quarry wall, which are rarely found at the sites of geological and geophysical work. Much more frequently, various specialists drill wells and collect samples. In such cases, instead of the TDR method for measuring dielectric permittivity, a laboratory method using a coaxial cell is employed. The substitution of one method for another leads to discrepancies in the measured values, primarily due to changes in the sample's condition compared to the natural state of the soil. Therefore, this study analyzes the magnitude of these discrepancies in artificial and natural sandy-clay deposits depending on the grain size distribution and moisture content.

About the Authors

M. A. Tarasova
Lomonosov Moscow State University
Russian Federation

Mariya A. Tarasova.

Moscow



S. S. Bricheva
Lomonosov Moscow State University; Institute of Geography of the RAS
Russian Federation

Svetlana S. Bricheva.

Moscow



M. L. Vladov
Lomonosov Moscow State University
Russian Federation

Mikhail L. Vladov.

Moscow



References

1. Бобров П.П., Беляева Т.А., Крошка Е.С. и др. Определение влажности образцов почв диэлектрическим методом // Почвоведение. 2019. № 7. С. 859-871.

2. Владов М.Л., Судакова М.С. Георадиолокация. От физических основ до перспективных направлений: Учебное пособие. М.: ГЕОС, 2017. 240 с.

3. Касимова А.У., Верзунов С.Н. Обзор современных методов измерения диэлектрической проницаемости горных пород // Проблемы автоматики и управления. 2022. № 1. С. 33-49.

4. Качинский Н.А. Механический и микроагрегатный состав почвы, методы его изучения. Акад. наук СССР. Почв. ин-т им. В.В. Докучаева. М.: Изд-во Акад. наук СССР, 1958. 192 с.

5. Крылов С.С., Бобров Н.Ю., Пряхина Г.В. и др. Особенности распространения и трансформации речных вод в приливном эстуарии р. Кереть // Метеорология и гидрология. 2014. № 10. С. 54-64.

6. Молостов И.П., Щербинин В.В. Коаксиальная измерительная ячейка для широкополосных измерений диэлектрической проницаемости // Известия Алтайского государственного университета. 2015. № 1-2. С. 56-60.

7. Сазонов Д.М. Антенны и устройства СВЧ. Учебник для радиотехнических специальностей вузов. М.: Высшая школа, 1988. 432 с.

8. Старовойтов А.В. Интерпретация георадиолокационных данных: Учебное пособие по курсу «Георадиолокация». 2-е изд., испр. и доп. М.: КДУ; Добросвет, 2023. 258 с.

9. Трофимов В.Т., Королев В.А., Вознесенский Е.А. и др. Грунтоведение. М.: Изд-во МГУ, 2005. 1024 с.

10. Botha G., Bristow C., Porat N., et al. Evidence for dune reactivation from GPR profiles on the Maputaland coastal plain, South Africa // Geological Society London Special Publications. 2003. Vol. 211. No. 1. P. 29-46.

11. Curtis J.O. A Durable Laboratory Apparatus for the Measurement of Soil Dielectric Properties // IEEE Transactions on Instrumentation and Measurement. 2001. Vol. 50. No. 5. P. 1364-1369.

12. Davis J.L., Chudobiak W.J. In-situ meter for measuring relative permittivity of soil // Geological Survey of Canada. 1975. No. 1A. P. 75-79.

13. Heimovaara T.J. Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils // Water Resources Research. 1994. Vol. 30. No. 2. P. 189-199.

14. Kelleners T.J., Robinson D.A., Shouse P.J., et al. Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils // Soil Sci. Soc. Am. J. 2005. Vol. 69. No. 1. P. 67-76.

15. Knoll M.D. A petrophysical basis for ground penetrating radar and very early time electromagnetics: Electrical properties of sand-clay mix-tures: Ph.D. thesis, University of British Columbia. 1996. P. 316.

16. Owenier F., Hornung J., Hinderer M. Substrate-sensitive relationships of dielectric permittivity and water content: implications for moisture sounding // Near Surface Geophysics. 2016. Vol. 16. No. 2. P. 128-152.

17. Rust A.C., Russell J.K., Knight R.J. Dielectric Constant as a Predictor of Porosity in Dry Volcanic Rocks // Journal of Volcanology and Geothermal Research. 1999. Vol. 91, No. 1. P. 79-96.

18. Schon J.H. Physical Properties of Rocks. Amsterdam: Elsevier. 2011. Vol. 8. P. 481.

19. Shenhui J., Ding D., Quanxing J. Measurement of Electromagnetic Properties of Materials Using Transmission/ Reflection Method in Coaxial Line // Asia-Pacific Conference on Environmental Electromagnetics. 2003. CEEM 2003. Proceedings. P. 590-595.

20. Topp G.C., Davis J.L., Annan A.P. Electromagnetic determination of soil water content: measurements in coaxial transmission line // Water Resources Research. 1980. Vol. 16, No. 3. P. 574-582.

21. Van Dam R.L., Schlager W., et al. Iron oxides as a cause of GPR reflections // Geophysics. 2002. Vol. 67. No. 2. P. 536-545.


Review

For citations:


Tarasova M.A., Bricheva S.S., Vladov M.L. Methodical features of field and laboratory dielectric permittivity measuring techniques for sand-clay ground. Moscow University Bulletin. Series 4. Geology. 2025;64(5):158-168. (In Russ.) https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-158-168

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)