Preview

ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ

Расширенный поиск

Водосодержащие минералы в мантии Земли

https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-3-26

Аннотация

Глубинные оболочки Земли отличаются различным содержанием воды. Основной механизм переноса воды из земной коры и Мирового океана в глубинные оболочки связан с процессами субдукции океанической литосферы. Мантийная переходная зона, благодаря способности накапливать воду номинально безводными минералами (вадслеитом и рингвудитом) представляет собой ее важнейший резервуар, особенно в сравнении с верхней мантией. Верхнемантийные перидотиты в составе погружаемых плит внутри переходной зоны могут сохранять H2O на больших глубинах в таких соединениях, как «алфавитные» DHMS фазы. Состав перидотита нижней мантии включает 80 масс. % Mg-перовскита (бриджманита), 15 масс. % ферропериклаза и 5 масс. % Ca-перовскита (дейвмаоита). Среди этих минералов наибольшее содержание воды допускается в Ca-перовските, за которым следуют Mg-перовскит и ферропериклаз. Учитывая огромную массу мантии Земли, даже минимальное количество воды, сосредоточенное в номинально безводных фазах, может в несколько раз превышать количество воды в современной гидросфере, несмотря на дегазацию мантии в результате вулканической деятельности, происходившей особенно интенсивно в первые 500 млн лет формирования планеты. Дана структурная характеристика минералов — возможных аккумуляторов воды в условиях глубинных геосфер.

Об авторе

Д. Ю. Пущаровский
Московский государственный университет имени М.В. Ломоносова
Россия

Пущаровский Дмитрий Юрьевич.

Москва



Список литературы

1. Геологическая эволюция Земли: от космической пыли до обители человечества / Отв. ред.: М.И. Кузьмин, В.В. Ярмолюк. Новосибирск: Гео, 2021. 327 с.

2. Каминский Ф.В. Вода в нижней мантии // Геохимия. 2018. № 12. С. 1099–1117.

3. Пущаровский Д.Ю. Железо и его соединения в ядре Земли: новые данные и идеи // Геохимия. 2019. Т. 64, № 9. С. 936–947.

4. Пущаровский Д.Ю. Минералогическая кристаллография. М.: ГЕОКАРТ; ГЕОС, 2020. 342 с.

5. Пущаровский Д.Ю. Новые высокобарические полиморфные модификации магнетита, ильменита, оливина, пироксенов и полевых шпатов // Вестн. Моск. ун-та. Сер. 4. Геология. 2024. № 3. С. 3–12.

6. Рагозин А.Л., Каримова А.А., Литасов К.Д. и др. Содержание воды в минералах мантийных ксенолитов из кимберлитов трубки Удачная (Якутия) // Геология и геофизика. 2014. Т. 55, № 4. С. 549–567.

7. Ращенко С.В. Mg3Si4O10(OH)2·H2O (10Å фаза) как резервуар H2O в мантийных условиях: образование, структура и стабильность по данным экспериментов in situ: Автореф. канд. дисс. Новосибирск: ИГМ СО РАН, 2015.

8. Хейзен Р. История Земли. От звездной пыли к живой планете. Первые 4 500 000 000 лет. М.: Альпина нон-фикшн, 2016. 346 с.

9. Хисина Н.Р., Вирт Р. Нановключения высокобарного гидросиликата Mg3Si4O10(OH)2·nH2O (10Å-фаза) в мантийных оливинах: механизмы образования и трансформации // Геохимия. 2008. № 4. С. 355–363.

10. Abe Y., Matsui T. Early evolution of the Earth: accretion, atmosphere formation, and thermal history // J. Geophys. Res. 1986. Vol. 91(B13). P. 291–302.

11. Abe R., Shibazaki Y., Ozawa S., et al. In situ X–ray diffraction studies of hydrous aluminosilicate at high pressure and high temperature // Journal of Mineralogical and Petrological Sciences. 2018. Vol. 113. P. 106–111.

12. Alexander C.M.O’D., Bowden R., Fogel M.L., et al. The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets // Science. 2012. Vol. 337. N 6095. P. 721–723.

13. Allegre C.J., Hamelin B., Provost A., Dupre B. Topology in isotopic multispace and origin of mantle chemical heterogeneities // Earth Planet. Sci. Lett. 1987. Vol. 81. P. 319–337.

14. Bindi L., Bendeliani A., Bobrov A., et al. Incorporation of Mg in phase Egg, AlSiO3OH: Toward a new polymorph of phase H, MgSiH2O4, a carrier of water in the deep mantle // Amer. Mineral. 2020. Vol. 105. P. 132–135.

15. Bindi L., Nishi M., Tsuchiya J., Irifune T. Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °С // Amer. Mineral. 2014. Vol. 99(8–9). P. 1802–1805.

16. Bolfan-Casanova N., Keppler H., Rubie D. Water partitionong between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle // Earth Planet. Sci. Lett. 2000. Vol. 182. P. 209–221.

17. Cai N., Inoue T. High-pressure and high-temperature stability of chlorite and 23-Å phase in the natural chlorite and synthetic MASH system // C. R. Geoscience. 2019. Vol. 351. P, 104–112. .

18. Cai N., Inoue T., Fujino K., et al. A possible new Al-bearing hydrous Mg-silicate (23 angstrom phase) in the deep upper mantle // Amer. Mineral. 2015. Vol. 100. P. 2330–2335.

19. Churakov S., Khisina N., Urusov V., Wirth R. First-principles study of (MgH2SiO4)·n(Mg2SiO4) hydrous olivine structures. I. Crystal structure modelling of hydrous olivine Hy-2a (MgH2SiO4)· 3(Mg2SiO4) // Phys. Chem. Miner. 2003. Vol. 30. P. 1–11.

20. Domanik K.J., Holloway J.R. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 Gpa: Implications for deeply subducted sediments // Geochimica et Cosmochimica Acta. 1996. Vol. 60. P. 4133–4150.

21. Drake M.J. Origin of water in the terrestrial planets // Meteoritics & Planetary Science. 2005. Vol. 40, No. 4. P. 1–9.

22. Duan Y., Sun N., Wang S., et al. Phase stability and thermal equation of state of δ-AlOOH: implication for water transportation to the Deep Lower Mantle // Earth Planet. Sci. Lett. 2018. Vol. 494. P. 92–98.

23. Eggleton R.A., Boland J.N., Ringwood A.E. High pressure synthesis of a new aluminium silicate: Al5Si5O17(OH) // Geochem. J. 1978. Vol. 12. P. 191–194.

24. Finger L.W., Hazen R.M., Prewitt C.T. Crystal structures of Mg12Si4O19(OH)2 (phase B) and Mg14Si5O24 (phase AnhB) // Amer. Mineral. 1991. Vol. 76(1). P. 1–7.

25. Finger L.W., Ko J., Hazen R.M., et al. Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle // Nature. 1989. Vol. 341. P. 140–142.

26. Frost D.J. The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd // Geochem. Soc. 1999. Spec. Issue. P. 283–296.

27. Frost D.J., Fei Y. Stability of phase D at high pressure and high temperature // J. Geophys. Res. 1998. Vol. 103. P. 7463–7474.

28. Frost D.J., Myhill R. Chemistry of the Lower Mantle // Deep Earth: Physics and Chemistry of the Lower Mantle and Core. Eds.: Terasaki H. and Fischer RA. Ch. 18. American Geophysical Union. John Wiley & Sons, Inc. 2016. P. 225–240.

29. Fukuyama K., Ohtani E., Shibazaki Y., et al. Stability field of phase Egg, AlSiO3OH at high pressure and high temperature: possible water reservoir in mantle transition zone // J. Mineral Petrol Sci. 2017. Vol. 112. P. 31–35.

30. Fumagalli P., Stixrude L., Poli S., Snyder D. The 10 Å phase: a high-pressure expandable sheet silicate during subduction of hydrated lithosphere // Earth Planet. Sci. Lett. 2001. Vol. 186. P. 125–141.

31. Gasparik T. (1990) Phase relations in the transition zone // J. Geophys. Res. 1990. Vol. 95. P. 15751–15769.

32. Gemmi M., Fischer J., Merlini M., et al. A new hydrous Al-bearing pyroxene as a water carrier in subduction zones // Earth Planet. Sci. Lett. 2011. Vol. 310. P. 422–428.

33. Gemmi M., Merlini M., Palatinus L., et al. Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle // Amer.Mineral. 2016. Vol. 101. P. 2645–2654.

34. Goes S., Agrusta R., van Hunen J., Garel F. Subduction-Transition Zone Interaction: A Review // Geosphere. 2017. Vol. 13 (3). P. 644–664.

35. Grevel K.D., Navrotsky A., Kahl W., et al. Thermodynamic data of the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) // Phys Chem Min. 2001. Vol. 28. P. 475–487.

36. Hatert F., Fransolet A.-M., Wouters J., Bernhardt H.-J. The crystal structure of sursassite from the Lienne Valley, Stavelot Massif, Belgium // Eur. J. Mineral. 2008. Vol. 20. P. 993–998.

37. Hayashi C., Nakazawa K., Mizuno H. Earth’smelting due to the blanketing effect of the primordial dense atmosphere // Earth Planet. Sci. Lett. 1979. Vol. 43. P. 22–28.

38. Horiuchi H., Morimoto N., Yamamoto K., Akimoto S. Crystal structure of 2Mg2SiO4·3Mg(OH)2, a new high-pressure structure type // Amer. Mineral. 1979. Vol. 64. P. 593–598.

39. Hu Q., Kim D.Y., Liu J., et al. Dehydrogenation of goethite in Earth’s deep lower mantle // Proc. Natl. Acad.Sci. U.S.A. 2017. Vol. 114. N. 7. P. 1498–1501.

40. Hu Q., Kim D.Y., Yang W., et al. FeO2 and FeOOH under deep lower mantle conditions and Earth’s oxygen–hydrogen cycles // Nature. 2016. Vol. 534. P. 241–244.

41. Hu Q., Liu J. Deep mantle hydrogen in the pyrite-type FeO2–FeO2H system // Geoscience Frontiers. 2021. Vol. 12. P. 975–981.

42. Huang S., Xu J., Chen C., et al. Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure // Minerals. 2020. Vol. 10(9). P. 780.

43. Kakizawa S., Inoue T., Kuribayashi T. Single-crystal X-ray structure refinement of Al-bearing superhydrous phase B // Phys. Chem. Miner. 2021. Vol. 48. N 29(8).

44. Kaminsky F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond // Earth-Science Reviews. 2012. Vol. 110. P. 127–147.

45. Kaminsky F.V. The Earth’s lower mantle. Composition and Structure. Springer. 2017. 331 p.

46. Kanzaki M. Stability of hydrous magnesium silicates in the mantle transition zone // Phys. Earth Planet. Inter. 1991. Vol. 66. P. 307–312.

47. Kato T, Kumazaw M. Melting experiment on natural lherzolite at 20 GPa: formation of phase B coexisting with garnet // Geophys. Res. Lett. 1986. Vol. 13. P. 181–184.

48. Khisina N.R., Wirth R., Andrut M., Ukhanov A.V. Extrinsic and intrinsic mode of hydrogen occurrence in natural olivines: FTIR and TEM investigation // Phys. Chem. Miner. 2001. Vol. 28. P. 291–301.

49. Kohlstedt D.L., Keppler H., Rubie D.C. Solubility of water in the α, β, and γ phases of (Mg,Fe)2SiO4 // Contrib. Mineral. Petrol. 1996. Vol. 123. P. 345–357.

50. Komabayashi T., Hirose K., Funakoshi K.-I., Takafuji N. Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations // Phys. Earth Planet Inter. 2005. Vol. 151. P. 276–289.

51. Krivovichev S.V. High-pressure silicates: crystal chemistry and systematic // Proceedings of the Russian Mineralogical Society. 2021. Vol. 150. № 5. С. 1–78.

52. Kudoh Y., Finger L.W., Hazen R.M., et al. Phase E: A High Pressure Hydrous Silicate with Unique Crystal Chemistry // Phys. Chem. Miner. 1993. Vol. 19. P. 357–360.

53. Kudoh Y., Inoue T., Arashi H. Structure and crystal chemistry of hydrous wadsleyite, Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone // Phys. Chem. Miner. 1996. Vol. 23(7). P. 461–469.

54. Kudoh Y., Kuribayashi T., Kagi H., et al. High-pressure structural study of phase-A, Mg7Si2H6O14 using synchrotron radiation // J. Phys.: Condens. Matter. 2002. Vol. 14. P. 10491–10495.

55. Lavina B., Dera P., Kim E., et al. Discovery of the recoverable high-pressure iron oxide Fe4O5 // Proc. Nat. Acad. Sci. U.S.A. 2011. Vol. 108. P. 17281–17285.

56. Li H-F., Oganov A.R., Cui H., et al. Ultrahigh-Pressure Magnesium Hydrosilicates as Reservoirs of Water in Early Earth // Phys. Rev. Lett. 2022. Vol. 128. P. 035703.

57. Li Y., Vočadlo L., Sun T., Brodholt J.P. The Earth’s core as a reservoir of water // Nature Geoscience. 2020. Vol. 13(6). P. 453–458.

58. Libowitzky E., Armbruster T. Low-temperature phase transitions and role of hydrogen bonds in lawsonite // Amer. Mineral. 1995. Vol. 80(11–12). P. 1277–1285.

59. Lin Y., Hu Q., Meng Y., et al. Evidence for the stability of ultrahydrous stishovite in Earth’s lower mantle // Proc. Nat. Acad. Sci. U.S.A. 2020. Vol. 117. P. 184–189.

60. Litasov K.D., Ohtani E. Hydrous lower mantle: the water source for wet plumes? In: 8th International Kimberlite Conference, FLA030, Victoria, BC: Elsevier. 2003. https://doi.org/10.29173/ikc2994

61. Liu L. Effects of H2O in the phase behavior of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth // Phys. Earth Planet. Inter. 1987. Vol. 49. P. 142–167.

62. Liu G., Liu L., Yang L., et al. Crystal structure and elasticity of Al-bearing phase H under high pressure // AIP Advances. 2018. Vol. 8. P. 055219.

63. Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth // Earth and Planetary Science Letters. 2012. Vol. 313–314. P. 56–66.

64. Marty B., Yokouchi R. Water in the early Earth // Reviews in Mineralogy & Geochemistry. 2006. Vol. 62. P. 421–450.

65. McDonough WF. Compositional model for the Earth’s core // Treatise Geochem. 2003. Vol. 2. P. 547–568.

66. Mellini M., Merlino S., Pasero M. X-ray and HRTEM study of sursassite: Crystal structure, stacking disorder, and sursassite-pumpellyite intergrowth // Phys. Chem. Miner. 1984. Vol. 10. P. 99–105.

67. Morbidelli A., Lunine J.I., O’Brien D.P., et al. Building terrestrial planets // Annu. Rev. Earth Planet. Sci. 2012. Vol. 40. P. 251–275.

68. Murakami M., Hirose K., Yurimoto H., et al. Water in Earth’s Lower Mantle // Science. 2002. Vol. 295. P. 1885–1887.

69. Nagashima M., Rahmoun N-S., Alekseev E.V., et al. Crystal chemistry of macfallite: Relationships to sursassite and pumpellyite // Amer. Mineral. 2008. Vol. 93(11–12). P. 1851–1857.

70. Nishi M., Irifune T., Tsuchita J., et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle // Nat. Geoscience. 2014. Vol. 7. P. 224–227.

71. Nishi M., Kuwayama Y., Tsuchiya J., Tsuchiya T. The pyrite-type high-pressure form of FeOOH // Nature. 2017. Vol. 547. P. 205–208.

72. Ohira I., Ohtani E., Sakai T., et al. Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism of water transport into the base of lower mantle // Earth Planet. Sci. Lett. 2014. Vol. 401. P. 12–17.

73. Ohtani E. Hydration and Dehydration in Earth’s Interior // Ann. Rev. Earth Planet. Sci. 2021. Vol. 49. P. 253–278.

74. Ohtani E., Amaike Y., Kamada S., et al. Stability of hydrous phase H MgSiO4H2 under lower mantle conditions // Geophys. Res. Lett. 2014. Vol. 41. P. 8283–8287.

75. Ohtani E., Ishii T. Role of water in dynamics of slabs and surrounding mantle // Progress in Earth and Planetary Science. 2024. Vol. 11. Article Number 65. https://doi.org/10.1186/s40645-024-00670-7

76. Ohtani E., Litasov K.D., Hosoya T., et al. Water transport into the deep mantle and formation of a hydrous transition zone // Phys. Earth Planet. Inter. 2004. Vol. 143–144. P. 255–269.

77. Okamoto K., Maruyama S. The high-pressure synthesis of lawsonite in the MORB-H2O system // Amer. Mineral. 1999. Vol. 84. P. 362–373.

78. Olsen P., Sharp Z.D. Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion // Phys. Earth Planet. Inter. 2019. Vol. 294. P. 106294

79. Ono S. High temperature stability limit of phase egg, Al-SiO3(OH) // Contrib. Mineral. Petrol. 1999. Vol. 137. P. 83–89.

80. Ono S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones // J. Geophys. Res. Space Phys. 1998. Vol. 103. N B8. P. 18253–18267.

81. Pacalo R.E.G., Parise J.B. Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400 °С and 20 GPa // Amer. Mineral. 1992. Vol. 77. P. 681–684.

82. Pamato M.G., Myhill B., Ballaran T.B., et al. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate // Nature Geoscience. 2015. Vol. 8. P. 75–79.

83. Pawley A.R. The pressure and temperature stability limits of lawsonite: implications for H2O recycling in subduction zones // Contrib Mineral Petrol. 1994. Vol. 118. P. 99–108.

84. Pawley A.R., Chinnery N.J., Clark S.M., Walter M.J. Experimental study of the dehydration of 10-Å phase, with implications for its H2O content and stability in subducted lithosphere // Contrib. Mineral. Petrol. 2011. Vol. 162(6). P. 1279–1289.

85. Pawley A., Wood B. The low-pressure stability of phase A, Mg7Si2O8(OH)6 // Contrib Mineral. Petrol. 1996. Vol. 124. P. 90–97.

86. Pearson D.G., Brenker F.E., Nestola F., et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond // Nature. 2014. Vol. 507(7491). P. 221–224.

87. Perchuk A.L., Zakharov V.S., Gerya T.V., Stern R.J. Shallow vs. Deep subduction in Earth history: Contrasting regimes of water recycling into the mantle // Precambrian Research. 2025. Vol. 418. 107690.

88. Peslier A.H., Schönbächler M., Busemann H.K., Karato S.-I. Water in the Earth’s Interior: Distribution and Origin // Space Sci. Rev. 2017. Vol. 212. P. 743–810.

89. Purevjav N., Okuchi T., Hoffmann Ch. Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction // IUCrJ, Neutron/Synchrotron. 2020. Vol. 7. N 3. P. 370–374.

90. Pushcharovsky D.Yu., Bindi L. Secrets from the Depths of Space and Earth: Unraveling Newly Discovered High-pressure polymorphs in meteorites and diamond inclusions // Minerals. 2025. Vol. 15. № 2. 144. Doi: 10.3390/min15020144

91. Reinecke T. Phase relationships of sursassite and other Mn-silicates in highly oxidized low-grade, high-pressure metamorphic rocks from Evvia and Andros Islands, Greece // Contrib. Mineral. Petrol. 1986. Vol. 94. P. 110–126.

92. Ringwood A.E., Major A. High pressure reconnaissance investigations in the system Mg2SiO4–MgO–H2O // Earth Planet. Sci. Lett. 1967. Vol. 2. P. 130–133.

93. Rubie D.C., Jacobson S.A., Morbidelli A., et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water // Icarus. 2015. Vol. 248. P. 89–108.

94. Rüpke L., Morgan J.P., Hort M., Connolly J.A.D. Serpentine and the subduction zone water cycle // Earth and Planetary Science Letters. 2004. Vol. 223(1–2). P. 17–34.

95. Sano A., Ohtani E., Kubo T., Funakoshi K-I. In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide δ-AlOOH at high pressure and temperature // Journal of Physics and Chemistry of Solids. 2004. Vol. 65. P. 1547–1554.

96. Schmidt M.W. Lawsonite: upper pressure stability and formation of higher density hydrous phases // Amer. Mineral. 1995. Vol. 80. P. 1286–1292.

97. Schmidt M.W., Finger L.W., Angel R.J., Dinnebier R.E. Synthesis, crystal structure, and phase relations of AlSiO3OH, a high-pressure hydrous phase // Amer. Mineral. 1998. Vol. 83. P. 881–888.

98. Schmidt M.W., Poli S. Devolatilization during subduction // Invited chapter for Treatise of Geochemistry, 4, The Crust. 2nd edition. 2014. P. 669–701.

99. Schmidt M.W., Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation // Earth and Planetary Science Letters. 1998. Vol. 163. P. 361–379.

100. Sclar C.B. High pressure studies in the system MgO— SiO2—H2O // Phys. Earth Planet. Inter. 1970. Vol. 3. P. 333.

101. Sharp Z.D. Nebular ingassing as a source of volatiles to the terrestrial planets // Chem. Geol. 2017. Vol. 448. P. 137–150.

102. Simonova D., Bykova E., Bykov M., et al. Structural Study of δ-AlOOH Up to 29 GPa // Minerals. 2020. Vol. 10(12). 1055. doi: 10.3390/min10121055

103. Smith E.M., Shirey S.B., Nestola F., et al. Large gem diamonds from metallic liquid in Earth’s deep mantle // Science. 2016. Vol. 354. P. 1403–1405.

104. Smyth J.R. A crystallographic model for hydrous wadsleyite: an ocean in the Earth’s interior? // Amer. Mineral. 1994. Vol. 79 (9–10). P. 1021–1024.

105. Solomatova N.V., Caracas R., Bindi L., Asimow P.D. Ab initio study of the structure and relative stability of MgSiO4H2 polymorphs at high pressures and temperatures // Amer. Mineral. 2022. Vol. 107. P. 781–789.

106. Spivak A.V., Iskrina A.V., Setkova A.V., et al. Synthesis and high pressure stability of novel GaGeO3OH compound — Analog of phase egg AlSiO3OH // Journal of Physics and Chemistry of Solids. 2025. Vol. 203. 112740

107. Suzuki A. In situ X–ray diffraction study of the phase boundary between diaspore and δ–AlOOH // Journal of Mineralogical and Petrological Sciences. 2022. Vol. 117. N1. Article number 211215.

108. Suzuki A., Ohtani E., Kamada T. A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000°C // Phys. Chem. Miner. 2000. Vol. 27. P. 689–693.

109. Townsend J.P., Tsuchiya J., Bina C.R., Jacobsen S.D. Water partitioning between bridgmanite and postperovskite in the lowermost mantle // Earth and Planetary Science Letters. 2016. Vol. 454. P. 20–27.

110. Thompson A.B. Water in the Earth’s upper mantle // Nature. 1992. Vol. 358. P. 295–302.

111. Tsutsumi Y., Sakamoto N., Hirose K., et al. Retention of water in subducted slabs under core–mantle boundary conditions // Nature Geoscience. 2024. Vol. 17. P. 697–704.

112. Umemoto K., Hirose K. Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations // Geophys. Res. Lett. 2015. Vol. 42. P. 7513–7520.

113. Wang B., Liu J., Zhang Y., et al. High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone // Nature Communications. 2025. Vol. 16. 1038. Doi: 10.1038/s41467-025-56312-z

114. Wang B., Zhang Y., Fu S., et al. Single-crystal elasticity of phase Egg AlSiO3OH and δ-AlOOH by Brillouin spectroscopy // Amer. Mineral. 2022. Vol. 107(1). P. 147–152.

115. Weber S.-U., Grodzicki M., Geiger C.A., et al. 57Fe Mössbauer measurements and electronic structure calculations on natural lawsonites // Physics and Chemistry of Minerals. 2007. Vol. 34(1). P. 1–9.

116. Welch M.D. Structural Mechanisms Stabilizing Hydrous Silicates at Deep-Earth Conditions. Celebrating the International Year of Mineralogy / Eds. L. Bindi and G. Cruciani // Springer Mineralogy. 2023. Ch. 7. P. 153–167.

117. Williams Q., Hemley R.J. Hydrogen in the Deep Earth // Annu. Rev. Earth Planet. Sci. 2001. Vol. 9. P. 365–418.

118. Wirth R., Vollmer C., Brenker F., et al. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil) // Earth Planet. Sci. Lett. 2007. Vol. 259. P. 384–399.

119. Wu J., Desch S.J., Schaefer L., et al. Origin of Earth’s water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core // J. Geophys. Res. Planets. 2018. Vol. 123. P. 2691–2712.

120. Wünder B., Medenbach O., Daniels P., Schreyer W. First synthesis of the hydroxyl endmember of humite, Mg-7Si3O12(OH)2 // Amer. Mineral. 1995. Vol. 80. P. 638–640.

121. Wünder B., Rubie D.C., Ross C.R., et al. Synthesis, stability and properties of Al2SiO4(OH)2: a fully hydrated analogue of topaz // Amer. Mineral. 1993. Vol. 78. P. 285–297.

122. Xu C., Inoue T. Melting of Al-rich phase D up to the uppermost lower mantle and transportation of H2O to the deep Earth // Geochem. Geophys. Geosyst. 2019. Vol. 20. P. 4382–4389.

123. Xu C., Inoue T., Kakizawa S., et al. Efect of Al on the stability of dense hydrous magnesium silicate phases to the uppermost lower mantle: implications for water transportation into the deep mantle // Physics and Chemistry of Minerals. 2021. Vol. 48. Art. number 31.

124. Yagi T. Hydrogen and oxygen in the deep Earth // Nature. 2016. Vol. 534. Art. Number 183. Doi: 10.1038/534183a

125. Yamamoto K., Akimoto S. High pressure and high temperature investigations in the system MgO-SiO2-H2O // Journal of Solid State Communications. 1974. Vol. 9. P. 187–195.

126. Yang H., Prewitt C.T., Frost D.J. Crystal structure of the dense hydrous magnesium silicate, phase D // Amer. Mineral. 1997. Vol. 80. P. 998–1003.

127. Yuan H., Zhang L., Ohtani E., et al. Stability of Fe-bearing hydrous phases and element partitioning in the system MgO– Al2O3–Fe2O3–SiO2–H2O in Earth’s lowermost mantle // Earth Planet. Sci. Lett. 2019. Vol. 524:115714.

128. Zhang J., Lv J., Li H., et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions // Phys. Rev. Lett. 2018. Vol. 121; 255703. Doi: 10.1103/PhysRevLett.121.255703


Рецензия

Для цитирования:


Пущаровский Д.Ю. Водосодержащие минералы в мантии Земли. ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ. 2025;64(5):3-26. https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-3-26

For citation:


Pushcharovsky D.Yu. The hydrated minerals in the Earth’s mantle. Moscow University Bulletin. Series 4. Geology. 2025;64(5):3-26. (In Russ.) https://doi.org/10.33623/MSU0579-9406-4-2025-64-5-3-26

Просмотров: 76


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)