The first discovery of a large diamond of the “CLIPPIR” group in the alluvial deposit Ebelyakh (Yakutia)
https://doi.org/10.55959/MSU0579-9406-4-2025-64-3-3-12
Abstract
Russia is the leader in the diamond mining industry among all countries of the world but finds of large diamonds over 50 carats of gem quality are very rare for its deposits. For example, the 342.5 carat XXVI Congress of the CPSU diamond was recovered in 1980 from the Mir kimberlite pipe and is still the largest gem-quality diamond mined in Russia. In 2023, a 390.65 carat gem-quality diamond fragment was discovered at the Ebelyakh alluvial deposit (Western Yakutia). The modelled 3D-reconstruction of the whole diamond crystal made it possible to assume that in terms of shape it was a dodecahedroid elongated along the L3 axis, the mass of which was about 1500 carats — this is the largest gem-quality diamond fragment found in the history of diamond mining in Russia.
This article is the first to present the results of a comprehensive study of a large diamond fragment weighing 390.65 carats. The research was carried out in the Gokhran of Russia and ALROSA using the methods of optical microscopy, photoluminescence and infrared spectroscopy. The detected inclusion in diamond was studied by Raman scattering. It was determined that the diamond belongs to type IIa according to the physical classification and has a single small inclusion in its composition belonging to the sulfide association. It was established that the studied diamond can be attributed to the CLIPPIR group of diamonds according to the totality of features. The authors tried to establish the regularities of formation of this diamond.
About the Authors
G. Yu. KriulinaRussian Federation
Galina Yu. Kriulina
Moscow
L. D. Bardukhinov
Russian Federation
Leonid D. Bardukhinov
Mirny
E. M. Sedykh
Russian Federation
Elena M. Sedykh
Mirny
R. V. Eremeev
Russian Federation
Roman V. Eremeev
Mirny
M. B. Kopchikov
Russian Federation
Mikhail B. Kopchikov
Moscow
O. A. Shilova
Russian Federation
Olga A. Shilova
Moscow
A. I. Vasina
Russian Federation
Anastasia I. Vasina
Moscow
L. A. Demidova
Russian Federation
Lyudmila A. Demidova
Moscow
References
1. Васильев Е.А. Дефекты кристаллической структуры в алмазе как индикатор кристаллогенеза // Записки Горного института. 2021. № 250. Т. 1. С. 1–11.
2. Винс В.Г., Елисеев А.П., Сарин В.А. Физические основы современных методов облагораживания природных алмазов и бриллиантов // Драгоценные металлы. Драгоценные камни. 2009. Т. 2, № 182. С. 132–14.
3. Вяткин С.В., Криулина Г.Ю., Бардухинов Л.Д., Гаранин В.К. Алмазы россыпного месторождения реки Моргогор (Анабар, Якутия) // Литосфера. 2023. № 4. С. 672–683.
4. Галимов Э.М., Каминский Ф.В. Алмазы в океанической литосфере. Вулканические алмазы и алмазы в офиолитах // Геохимия. 2021. Т. 66, № 1. С. 3–14.
5. Голубев Ю.К., Гаранин К.В., Кошкарев Д.А. и др. Состояние и перспективы развития минерально-сыревой базы алмазов России // Минеральные ресурсы России. Геологоразведка и сырьевая база. 2020. № 6. С. 3–11.
6. Граханов С.А., Проскурнин В.Ф., Петров О.В., Соболев Н.В. Алмазоносные туфогенно-осадочные породы Триаса Арктической зоны Сибири // Геология и геофизика. 2022. Т. 63, № 4. С. 550–578.
7. Криулина Г.Ю., Васильев Е.А., Гаранин В.К. Структурно-минералогические особенности алмаза месторождения имени М.В. Ломоносова (Архангельская провинция): новые данные и их интерпретация // Доклады Академии наук. 2018. Т. 486, № 6. С. 43–46.
8. Кухаренко А.А. Алмазы Урала. М., 1955. 512 с.
9. Лобковский Л.И., Рамазанов М.М., Котелкин В.Д. Развитие модели верхнемантийной конвекции, сопряженной с зоной субдукции, с приложениями к мелкайнозойской геодинамике Центрально-Восточной Азии и Арктики // Геодинамика и тектонофизика. 2021. № 12(3). С. 456–470.
10. Мальковец В.Г., Шацкий В.С., Дак А.И. и др. Свидетельства многоэтапности и полихронности щелочно-ультраосновного мезозойского магматизма в районе алмазоносных россыпей бассейна реки Эбелях (восточный склон Анабарского щита) // Доклады АН. 2021. Т. 496, № 1. С. 49–54.
11. Пучков В.Н., Зедгенизов Д.А. Мантийная конвекция и алмазы // Литосфера. 2023. № 4. С. 476–490.
12. Симаков С.К. Образование алмазов типа IIa // Доклады академии наук. 2018. Т. 482, № 5. С. 583–586.
13. Agrosì G., Tempesta G., Mele D., et al. Multiphase inclusions associated with residual carbonate in a transition zone diamond from Juina (Brazil) // Lithos. 2019. 105279. P. 350–351.
14. Bowen D.C., Ferraris R.D., Palmer C.E., Ward J.D. On the unusual characteristics of the diamonds from Letšeng-la-Terae kimberlites, Lesotho // Lithos. 2009. Vol. 112S. P. 767–774.
15. Dobrinets I.A, Vins V.G., Zaitsev A.M. HPHT- treated diamonds. Diamonds forever. Springer Series in Materials Science, 2013. P. 276.
16. Goss J.P., Briddon P.R., Hill V., et al. Identification of the structure of the 3107 cm−1 H-related defect in diamond // J. Phys.: Condens. Matter. 2014. Vol. 26. P. 1–6.
17. Kaminsky F. Basic problems concerning the composition of the Earth’s lower mantle // Lithos. 2020. 105515. P. 364–365.
18. Kogarko L.N. Plume related kimberlites and carbonatites // Mineral. Petrol. 2022. DOI: 10.1007/s00710-022-00789-9.
19. Moore A.E. The origin of large irregular gem-quality type II diamonds and the rarity of blue type IIb varieties // South African J. Geol. 2014. Vol. 117. P. 219–236.
20. Motsamai T., Harris J.W., Stachel T., et al. Mineral inclusions in diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds? // Mineralogy and Petrology. 112 (Suppl 1). 2018. P. 169–180.
21. Shatsky V.S., Ragozin A.L., Logvinova A.M., et al. Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian craton // Lithos. 2020. Vol. 105514. P. 364–365.
22. Smit K.V., Shirey S.B. Diamond from the deep // Gems & Gemology. Spring 2020. Vol. 56, No. 1. P. 148–155.
23. Smith E.M., Shirey S.B., Wang W. The very deep origin of the world’s biggest diamonds // Gems & Gemology. Vol. LIII. 2017. P. 388–403.
24. Sobolev N.V., Tomilenko A.A., Bul’bak T.A., Logvinova A.M. Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia // Engineering. 2019. Vol. 5. P. 471–478.
25. Taylor L.A., Anand M. Diamonds: time capsules from the Siberian mantle // Chem. Erde Geochem. 2004. Vol. 64. P. 1–74.
26. Taylor L.A., Liu Y. Sulfide inclusions in diamonds: not monosulfide solid solution. Russian // Geology and Geophysics. 2009. Vol. 50. P. 1201–1211.
27. Ulrika F.S., D’Haenens-Johansson, Smith E.M., et al. The 812-carat pure Type IaB constellation diamond from Karowe — part of an even larger rough // Extended Abstracts. 11th International Kimberlite Conference. 2017. Gaborone. Botswana. 11IKC-4611.
28. Woodhead J., Hergt J., Giuliani A., et al. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir // Nature. 2019. Vol. 573. P. 578–581.
29. Zemnukhov A.L., Reutsky V.N., Zedgenizov D.A., et al. Subduction related population of diamonds in Yakutian placers, northeastern Siberian platform // Contrib. Mineral. Petrol. 2020. Vol. 175. P. 98.
Review
For citations:
Kriulina G.Yu., Bardukhinov L.D., Sedykh E.M., Eremeev R.V., Kopchikov M.B., Shilova O.A., Vasina A.I., Demidova L.A. The first discovery of a large diamond of the “CLIPPIR” group in the alluvial deposit Ebelyakh (Yakutia). Moscow University Bulletin. Series 4. Geology. 2025;64(3):3-12. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2025-64-3-3-12