Estimation of the uncertainties of structural imaging in the absence of wells in the Caspian Sea
https://doi.org/10.55959/MSU0579-9406-4-2025-64-2-126-133
Abstract
The article is dedicated to the factors affecting the estimation of the structural uncertainty on the 2D seismic data for the case of no LOG and VSP data on the one of the Caspian Sea areas. Complex seismogeological structure of the near-surface section and high and low-velocity local anomalies affected the structural geometry for the target reflecting horizons — are the key features of project. 2D seismic data was processed and interpreted from 2020 and 2023. During re-processing in 2023, the imaging of time and depth migrated images was significantly enhanced in particular by efficient supervision and interpretive maintenance. The results of the evaluation of the uncertainties of the structural plan for the area of interest were of fundamental importance for the further planning of the methodology of 3D seismic exploration and drilling.
About the Authors
E. A. MilentevaRussian Federation
Ekaterina A. Milenteva1
Moscow
R. O. Vereshchakin
Russian Federation
Roman O. Vereshchakin
Moscow
A. S. Lomakina
Russian Federation
Aleksandra S. Lomakina
Moscow
А. А. Obolenskaya
Russian Federation
Аlina А. Obolenskaya
Moscow
References
1. Гржибовский А.М. Проверка распределения и описательная статистика. Архангельск: Экология человека, 2007. С. 52–58.
2. Киселёв В.С., Козлов Е.А., Захарова Г.А. Инструкция по оценке качества структурных построений и надежности выявленных и подготовленных объектов по данным сейсморазведки МОВ-ОГТ (при работах на нефть и газ). М., 1984. С. 7–15.
3. Куркин А.А. Оценка пространственного распределения погрешности структурных построений. Тюмень: ООО «НОВАТЭК НТЦ», Тюменский государственный нефтегазовый университет, 2016. 20 с.
4. Орлов А.И. Математика случая. Вероятность и статистика — основные факты: Учебное пособие. М.: МЗ-Пресс, 2004. 110 с.
5. Шаталов К.В., Кириллова А.В. Применение критерия Стьюдента для оценки результатов межлабораторных сравнительных испытаний. Эталоны. Стандартные образцы. 2016. 350 с.
6. Cao J., Shi Ya., Wang D., Zhang X.Acoustic Log Prediction on the Basis of Kernel Extreme Learning Machine for Wells in GJH Survey, Erdos Basin, College of Computer Science and Information Engineering, Tianjin University of Science and Technology. China, 2017. 6 c.
7. Messud J., Guillaume P., Lambar’e G. Massy. CGG. On velocity and migration structural uncertainties: A new approach using non-linear slope tomography. Published in arXiv.org // Research Gate, Engineering. Geology. 2020. 27 с.
Review
For citations:
Milenteva E.A., Vereshchakin R.O., Lomakina A.S., Obolenskaya А.А. Estimation of the uncertainties of structural imaging in the absence of wells in the Caspian Sea. Moscow University Bulletin. Series 4. Geology. 2025;64(2):126-133. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2025-64-2-126-133