Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Zirconium geochemistry in the late magmatic process in ultramafic-mafic intrusions on the example of the Kivakka layered massif (North Karelia)

https://doi.org/10.55959/MSU0579-9406-4-2025-64-2-57-64

Abstract

The zircon is an important mineral that preserves geochemical indicators of the magmatic process and is widely used for geochronology. Recently, in addition to zircon of magmatic origin, grains of hydrothermal origin have been isolated. However, a thermodynamic description of the behavior of zirconium in postmagmatic processes has not yet been obtained. In this work, using the example of the Kivakka layered massif, the behavior of zirconium in ultramafic-mafic intrusions is considered. Zirconium, as an incoherent element, accumulates in the melt during crystallization of the massif; it crystallizes in the upper contact part of the intrusion, and then undergoes hydrothermal transformation and re-deposition in the postmagmatic process.

About the Authors

E. P. Miklyaeva
Geological Institute, Russian Academy of Sciences
Russian Federation

Elizaveta P. Miklyaeva

Moscow



A. Yu. Bychkov
Lomonosov Moscow State University
Russian Federation

Andrey Yu. Bychkov

Moscow



I. Yu. Nikolayeva
Lomonosov Moscow State University
Russian Federation

Irina Yu. Nikolayeva

Moscow



M. E. Tarnopolskaya
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)
Russian Federation

Mariya E. Tarnopolskaya

Moscow



E. A. Minervina
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)
Russian Federation

Elena A. Minervina

Moscow



References

1. Аксюк А.М. Экспериментально обоснованные геофториметры и режим фтора в гранитных флюидах // Петрология. 2002. № 10. С. 630–644.

2. Бычкова Я.В., Бычков Д.А., Минервина Е.А. и др. Закономерности распределения редкоземельных элементов в Киваккском оливинит-габброноритовом расслоенном интрузиве (Северная Карелия) // Геохимия. 2019. T. 64, № 2. С. 145–167.

3. Бычкова Я.В., Коптев-Дворников Е.В. Ритмическая расслоенность киваккского типа: геология, петрография, петрохимия, гипотеза формирования // Петрология. 2004. Т. 12, № 3. С. 281–302.

4. Коптев-Дворников Е.В., Киреев Б.С., Пчелинцева Н.Ф., Хворов Д.М. Распределение кумулятивных парагенезисов, породообразующих и второстепенных элементов в вертикальном разрезе Киваккского интрузива (Олангская группа интрузивов, Северная Карелия // Петрология. 2001. Т. 9, № 1.С. 3–27.

5. Коржинский М.А. Апатитовый твердый раствор как индикатор летучести HCl и HF в гидротермальном флюиде // Геохимия. 1981. № 5. С. 689–706.

6. Тарнопольская М.Е., Бычков А.Ю. Экспериментальное исследование устойчивости ZrF6 2- в гидротермальных растворах при 90–255°C // Вестник Московского университета. Сер. 4. Геология. 2019. № 6. С. 107–111.

7. Шваров Ю.В. HCh: новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. С. 898–903.

8. Alapieti T., Filén B., Lahtinen J., et al. Early Proterozoiclayered intrusions in the northeastern part of the Fennoscandian Shield // Miner. Petrol. 1990. Vol. 42. P. 1–22.

9. Amelin Yu.V., Semenov V.S. Nd and Sr isotope geochemistry of the mafic layered intrusions in the eastern Baltic shield: implications for the sources and contamination of Paleoproterozoic continental mafic magmas // Contrib. Mineral. Petrol. 1996. Vol. 124. P. 255–272.

10. Bychkova Y.V., Mikliaeva E.P., Koptev-Dvornikov E.V., et al. Proterozoic kivakka layered mafic-ultramafic intrusion, northern Karelia, Russia: Implications for the origin of granophyres of the upper boundary group // Precambrian Research. 2019a. Vol. 331. P. 1–21.

11. Cawthorn R.G. The residual of Roof Zone of the Bushveld Complex, South Africa // Journal of Petrology. 2013. Vol. 54, № 9. P. 1875–1900.

12. Ghiorso M.S., Evans B.W. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of Science. 2008. Vol. 308. P. 957–1039.

13. Hoskin P.W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochimica et Cosmochimica Acta. 2005. Vol. 69, № 3. P. 637–648.

14. Latypov R., Chistyakova S. Phase equilibria testing of a multiple pulse mechanism for origin of maficultramafic intrusions: a case example of the Shiant Isles Main Sill, NW Scotland // Geol. Mag. 2009. Vol. 146, № 6. P. 851–875.

15. Martin D. Crystal settling and in situ crystallization in aqueous solutions in magma chambers // Earth Planet. Sci. Lett. 1990. Vol. 96. P. 336–348.

16. McCallum I.S. The Stillwater complex // Developments in Petrology. 1996. Vol. 15. P. 441–484.

17. McDonough W.F., Sun S.S. The composition of the Earth // Chemical Geology. 1995. Vol. 120. P. 223–253.

18. Migdisov Art. A., Williams-Jones A.E., van Hinsberg V., Salvi S. An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature // Geochim. Cosmochim. Acta. 2011. Vol. 75, № 23. P. 7426–7434.

19. Putirka K.D. Thermometers and Barometers for Volcanic Systems // Reviews in Mineralogy and Geochemistry. 2008. Vol. 69(1). P. 61–120. doi:10.2138/rmg.2008.69.3

20. Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. et Cosmoch. Acta. 1997. Vol. 61, № 5. P. 907–950.

21. Thomas J.B., Bodnar R.J., Shimizu N., Sinha A.K. Detemination of zircon/melt trace element partition coefficient from SIMS analysis of melt inclusions in zircon // Geochimica et CosmochimicaActa. 2002. Vol. 66. № 16. P. 2887–2901.

22. VanTongeren J.A., Mathez E.A., Kelemen P.B. A felsic end to Bushveld differentiation // Journal of Petrology. 2010. Vol. 51. P. 1891–1912.

23. Wager L., Brown G. Layered Igneous Rocks. Edinburg and London, 1968.

24. Wall C.J., Scoates J.S., Weis D., et al. The Stillwater Complex: Integrating Zircon Geochronological and Geochemical Constraints on the Age, Emplacement History and Crystallization of a Large, Open-System Layered Intrusion // Journal of Petrology. 2018. Vol. 59, № 1. P. 153–190.


Review

For citations:


Miklyaeva E.P., Bychkov A.Yu., Nikolayeva I.Yu., Tarnopolskaya M.E., Minervina E.A. Zirconium geochemistry in the late magmatic process in ultramafic-mafic intrusions on the example of the Kivakka layered massif (North Karelia). Moscow University Bulletin. Series 4. Geology. 2025;64(2):57-64. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2025-64-2-57-64

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)