Natural constraints on use of rare elements in photovoltaic technologies
https://doi.org/10.55959/MSU0579-9406-4-2025-64-2-3-18
Abstract
In response to the ongoing debate on climate change and cleaner power technologies several scenarios for the future electricity generation have been recently proposed. All of them include a substantial share of photovoltaic solar technologies. However these technologies are more material intensive than traditional methods of power generation. There is a growing concern about availability of critical metals including In, Te, Se, Cd, Ge, Ga required for the large scale implementation of new technologies. These elements are companion metals recovered mainly from copper and zinc ores and bauxite. In this paper possible natural constraints on use of rare elements resulted from impact of increasing demand for companion metals on the supply of host metals are examined.
About the Authors
A. L. DergachevRussian Federation
Aleksander L. Dergachev
Moscow
E. M. Shemyakina
Russian Federation
Elizaveta M. Shemyakina
Moscow
V. V. Dyakonov
Russian Federation
Viktor V. Dyakonov
Moscow
References
1. Дергачев А.Л., Шемякина Е.М. Запасы критического минерального сырья и дополнительные потребности в нем в эпоху энергетического перехода // Вестн. Моск. ун-та. Сер. 4. Геология. 2024. № 2. С. 3–16.
2. Дергачев А.Л., Шемякина Е.М. Критическое минеральное сырье для малоуглеродной энергетики // Вестн. Моск. ун-та. Сер. 4. Геология. 2023. № 3. С. 3–10.
3. Лебедь А.Б., Набойченко С.С., Шунин В.А. Производство селена и теллура на ОАО «Уралэлектромедь». Екатеринбург: Изд-во Уральского университета. 2015. 112 с.
4. Bleiwas D.I. Byproduct mineral commodities used for the production of photovoltaic cells // U.S. Geological Survey Circular 1365. 2010. URL: http://pubs.usgs.gov/circ/1365/
5. Buchert M., Schuler D., Bleher D. Critical metals for future sustainable technologies and their recycling potential // UNEP, 2009. URL: http://www.resourcefever.org/publications/reports/UNEP_OEKO_CriticalMetals_July09.pdf (дата обращения: 01.07.2024).
6. Butterman W.C., Brown R.D.Jr. Mineral Commodity Profiles: Selenium // U.S. Department of the Interior, U.S. Geological Survey. Open-File Report 03–018. 2004. URL: https://pubs.usgs.gov/of/2003/of03-018/of03-018.pdf (дата обращения: 01.07.2024).
7. Elshkaki A., Graedel T.E. Solar cell metals and their hosts: A tale of oversupply and undersupply // Applied Energy. 2015. Vol. 158. P. 167–177.
8. Fthenakis V. Life cycle impact analysis of cadmium in CdTe PV production // Renewable and Sustainable Energy Rev. 2004. Vol. 8 (4). P. 303–334.
9. Fthenakis V., Anctil A. Direct Te mining: resource availability and impact on cumulative energy demand of CdTe PV life cycles // IEEE Journal of Photovoltaics. Vol. 3. 2013. № 1. P. 433–438.
10. Goe M., Gaustad G. Identifying critical materials for photovoltaics in the US: a multi-metric approach // Appl. Energy. 2014. Vol. 123. P. 387–396.
11. Graedel T.E., Barr B., Chandler C., et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2012. Vol. 46. P. 1063–1070.
12. Grandell L., Thorenz A. Silver supply risk analysis for the solar sector // Renew Energy. 2014. Vol. 69. P. 157–165.
13. Haynes W.M., Lide D.R., Bruno T.J. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data // Boca Raton, Florida: CRC Press. 2016. P. 14–17.
14. IEA (International Energy Agency) 2016. Energy technology perspectives 2016: Towards Sustainable Urban Energy Systems // Paris: IEA. 2016. URL: https://www.iea.org/reports/energy-technology-perspectives-2016 (дата обращения: 17.03.2022).
15. IEA 2017. Energy technology perspectives 2017: Catalysing Energy Technology Transformations // Paris: IEA. 2017. URL: https://www.iea.org/topics/energy-technologyperspectives (дата обращения: 10.01.2022).
16. Mineral Commodities Summaries 2024. URL: https://www.usgs.gov/centers/national-minerals-information-center/commodity-statistics-and-information (дата обращения: 02.08.2024).
17. Nassar N.T., Kim H., Frenzel M., et al. Global tellurium supply potential from electrolytic copper refining // Resources, Conservation & Recycling. 2022. Vol. 184. URL: https://www.sciencedirect.com/science/article/pii/S0921344922002774?via%3Dihub (дата обращения: 01.07.2
18. Ojebuoboh F. Selenium and tellurium from copper refinery slimes and their changing applications // World of Metallurgy — ERZMETALL. V. 61. 2008. P. 33–39.
19. Paradis S. Indium, germanium and gallium in volcanic- and sediment-hosted base-metal sulphide deposits // Symposium on Strategic and Critical Materials Proceedings, November 13–14, 2015, Victoria, British Columbia. British Columbia Geological Survey Paper 2015-3. P. 23–29.
20. US DOE (U.S. Department of Energy) 2011. Critical materials strategy // DOE.2011. URL: http://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf (дата обращения: 01.01.2023).
21. World Bank 2020. Minerals for climate action: The mineral intensity of the clean energy transition. Washington, DC: World Bank. 2020. URL: https://www.commdev.org/publications/minerals-for-climate-action-the-mineralintensity-of-the-clean-energy-transition/ (дата обращения: 10.01.2022).
22. World Mining Data 2024. URL: https://www.world-mining-data.info/wmd/downloads/PDF/WMD%202024.pdf (дата обращения: 13.07.2024).
23. Yin J., Yin H., Chao Y., Shi H. Energy and tellurium deposits // AIMS Geosciences. 2024. Vol. 10 (1). P. 28–42.
Review
For citations:
Dergachev A.L., Shemyakina E.M., Dyakonov V.V. Natural constraints on use of rare elements in photovoltaic technologies. Moscow University Bulletin. Series 4. Geology. 2025;64(2):3-18. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2025-64-2-3-18