Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Temperature dependence of the rate constant of the reaction of gypsum dissolution in water

https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-179-184

Abstract

As a result of the analysis of data from literary sources, the average values of the reaction rate constant for the dissolution of gypsum in water (kav = 1,48 × 10–5 mmol/(cm2s), 25 °C) and activation energy (Eav I = 39 kJ/mol), characteristic of kinetic and diffusion-kinetic control conditions, were determined.. The calculated temperature dependence obeys the Arrhenius equation in the range 0–40 °C (logkav = 1,95–2021/T, K). An increase in solution temperature (T > 40 °C) causes diffusion inhibition of heterogeneous chemical reactions of gypsum dissolution. It is assumed that at T ≈ 40–42 °C the boundary between the macrokinetic regions of the process of dissolution of gypsum in water corresponds to the zone of temperature transition between the equilibrium state of gypsum and anhydrite (CaSO4 · 2H2Os-CaSO4 s-H2O; P = 0,1 MPa). It is proposed that a similar transition in electrolyte solutions should also be determined taking into account the diffusion resistance of the rate of chemical interactions on the reaction surface of gypsum with increasing solution temperature.

About the Authors

A. L. Lebedev
Lomonosov Moscow State University
Russian Federation

Alexey L. Lebedev

Moscow



I. V. Avilina
Lomonosov Moscow State University
Russian Federation

Irina V. Avilina

Moscow



References

1. Каражанов Н.А. Кинетика растворения сульфатов кальция // Тр. ВНИИГ.1959. № 36. C. 177–188.

2. Каршин В.П., Григорян В.А. Кинетика растворения гипса в воде // Журн. физ. химии. 1970. Т. 44, № 5. С. 1356.

3. Лебедев А.Л. Кинетика растворения гипса в воде // Геохимия. 2015. № 9. С. 828–841.

4. Лебедев А.Л., Лехов А.В. Процесс массоотдачи загипсованных трещиноватых пород в подземных водах // Водные ресурсы. 1999. Т. 26, № 3. С. 312–321.

5. Лебедев А.Л., Лехов А.В. Кинетика растворения природного гипса в воде при 5–25 °C // Геохимия. 1989. № 6. С. 865–874.

6. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. 502 с.

7. Barton A.F., Wilde N.N. Dissolution rates of polycrystalline samples of gypsum and orthorhombic forms of calcium sulphate by a rotating disc method // Trans. Faraday. Soc. 1971. Vol. 67. P. 3590–3597.

8. Colombani J. Measurement of the pure dissolution rate constant of a mineral in water // Geochim. Cosmochim. Acta. 2008. Vol. 72. P. 5634–5640.

9. Davion M. Etude sur la vitesse de dissolution des selscristallises // Ann. de Chim. De Phys.1953. Vol. 12(8). P. 259–295.

10. Dewers T., Raines M. Reply to comment on: mixed transport/reaction control of gypsum dissolution kinetics // Chem. Geol. 2000. Vol. 168. P. 275–278.

11. Dutka F, Starchenko V., Osselin F., et al. Time-dependent shapes of a dissolving mineral grain: Comparisons ofsimulations with microfluidic experiments // Chemical Geology. 2020. Vol. 540. P. 119459. https://doi.org/10.1016/j.chemgeo.2019.119459.

12. James A.N., Lupton A.R. Gypsum and anhydrite in foundations of hydraulic structures // Geotechnigue. 1978. Vol. 28(3). P. 249–272.

13. Jeschke A.A., Vosbeck K., Dreybrodt W. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics // Geochim. Cosmochim. Acta. 2001. Vol. 65(1). P. 27–34.

14. Jin Q., Perry L., Bullard J. Temperature dependence of gypsum dissolution rates // Cement and Concrete Research. 2020. January. Vol. 129(6). P. 105969. https://doi.org/10.1016/j.cemconres.2019.105969.

15. Kontrec J., Kralj D., Brecevic L. Transformation of anhydrous calciumsulphate into calciumsulphate dihydrate in aqueous solutions // J. Crystal. Growth. 2002.Vol. 240. P. 203–211.

16. Liu S.-T., Nancollas G.H. The kinetics of dissolution of calcium sulfate dehydrate // J. Inorg. Nucl. Chem. 1971. Vol. 33(8). P. 2311–2316.

17. Mbogoro M.M., Snowden M.E., Edwards M.A. Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution: surface selective studies under hydrodynamic control and the effect of additives // J. Phys. Chem. 2011. Vol. 115. P. 10147–10154.

18. Tang J., Bullard J.W., Perry L.N., et al. An empirical rate law for gypsum powder dissolution // Chemical Geology. 2018. Vol. 498. P. 96–105.

19. Van Driessche A.E.S., Stawski T.M., Benning L.G., Kellermeier M. Calcium sulfate precipitation throughout its phase diagram. In New perspectives on mineral nucleation and growth: from solution precursors to solid materials / Eds.: A.E.S. Van Driessche, M. Kellermeier, L.G. Benning, D. Gebauer. Springer International Publishing, 2017. Switzerland, 227–256.

20. Voigt W., Freyer D. Solubility of anhydrite and gypsum at temperatures below 100°C and the gypsum-anhydrite transition temperature in aqueous solutions: a re-assessment // Front. Nucl. Eng. 2023. 2: 1208582. doi: 10.3389/fnuen.2023.1208582.

21. Wang Z., Zhou J., Wu H., et al. Dissolution kinetics of calcium sulfate dehydrate // Ciesc Journal. 2015. Vol. 66(3). P. 1001–1006.

22. Zaier I., Billiotte J., Charmoille A., et al. The dissolution kinetics of natural gypsum: a case study of Eocene facies in the north-eastern suburbs of Paris // Environmental Earth Sciences. 2021. Vol. 80(8). https://doi.org/10.1007/s12665-020-09275-x


Review

For citations:


Lebedev A.L., Avilina I.V. Temperature dependence of the rate constant of the reaction of gypsum dissolution in water. Moscow University Bulletin. Series 4. Geology. 2024;(6):179-184. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-179-184

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)