Hydrogeochemical Modeling of Hydrogen Sulfide Formation in a Carbonate Reservoir: A Case Study of the Shanul Field, Southwest Iran
https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-163-172
Abstract
Thermochemical sulfate reduction (TSR) is one of the mechanisms responsible for the generation of hydrogen sulfide in a reservoir. Recently, novel hydrogeochemical modeling approaches are developed to unravel TSR in hydrocarbon reservoirs. These modeling were developed in order to comprehend the basic hydrogeochemical mechanisms for H2S production and its controlling factors. In this paper, the modeling of the TSR process in Permian-Lower Triassic deposits was carried out using the example of the Shanul gas field in southwestern Iran. The one-dimensional diffusive mass transport model used in this study (Phreeqc) is based on equilibrium reactions for gas–water–rock interactions and kinetic reactions for sulfate reduction and methanogenesis. The simulation results show that the intensity of the TSR reaction and the volume of driven H2S are influenced to a large extent by three factors: the mineral composition of the host reservoir rock, the pressure drop of the reservoir, and the pH of the formation water. The results highlight that, the mineral composition of the host rocks alters the intensity of TSR process. The presence of iron containing minerals may significantly inhibit the H2S production. Modeling results show that the presence of 5% iron-containing minerals could completely remove hydrogen sulfide from the system within 20 years. Moreover, it has been observed that the change in reservoir pressure after production or injection also significantly affects the content of hydrogen sulfide in the reservoir. A pressure drop up to fifty percent (from 600 to 300 atm) of the initial reservoir pressure increases the H2S content by more than ten times (from 4×10–4 to 4×10–3 mol/kg (H2O). In addition, it has been shown that changing the pH of an aqueous solution significantly changes the rate of TSR reaction. According to the simulation results a 20% decrease in water pH (From 6.5 to 5.7) will lead to an increase in H2S concentration from 8×10–4 to 16×10–4 mol/kg (H2O).
About the Authors
H. GholizadehRussian Federation
Hamidreza Gholizadeh
Moscow
E. A. Krasnova
Russian Federation
Elizaveta A. Krasnova
Moscow
A. V. Korzun
Russian Federation
Anna V. Korzun
Moscow
A. Rabbani
Islamic Republic of Iran
Ahmadreza Rabbani
Tehran
References
1. Амурский Г.И., Кулибакина И.Б., Соловьев Н.Н. Вертикальная зональность в образовании и аккумуляции сероводорода // Геология нефти и газа. 1984. Т. 1. С. 47–51.
2. Анисимов Л.А. Условия абиогенного восстановления сульфатов в нефтегазоносных бассейнах // Геохимия. 1978. Т. 11. С. 1692–1702.
3. Голизаде Х. Происхождение и механизм появления сероводорода на примере одного газового месторождения палео-высоты Прибрежного Фарса, Иран // Вестник евразийской науки. 2022. Т. 14(2). С. 9–16.
4. Дахнова М.В. Геохимия серы в связи с проблемой нефтегазоносности. М.: Всероссийский научно-исследовательский геологический нефтяной институт (ВНИГНИ), 1999.
5. Adams M.M., Hoarfrost A.L., Bose A., et al. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity // Frontiers in microbiology. 2013. Vol. 4(14).
6. Amrani A., Zhang T., Ma Q., et al. The role of labile sulfur compounds in thermochemical sulfate reduction // Geochimica et Cosmochimica Acta. 2008. Vol. 72. P. 2960–2972.
7. Appelo C.A., Postma D. Geochemistry, Groundwater and Pollution. 2005. Second Edition. Taylor & Francis. s.l.: 6000 Broken Sound Parkway, NW, (Suite 300), Boca Raton, FL 33487, USA.
8. Ashrafi T., Saberi M.H., ZareNezhad B. 1D and 2D basin modeling, in evaluating the hydrocarbon generation-migration-accumulation potential, at coastal Fars Area, Southern Iran // Journal of Petroleum Science and Engineering. 2020. Vol. 195(107594).
9. Basafa M., Hawboldt K. Reservoir souring: sulfur chemistry in offshore oil and gas reservoir fluids // Journal of Petroleum Exploration and Production Technology. 2018.
10. Bildstein O., Worden R.H., Brosse E. Assessment of anhydrite dissolution as the rate limiting step during thermochemical sulfate reduction // Chemical Geology. 2001. Vol. 176. P. 173–189.
11. Bordenave M.L. The origin of the Permo-Triassic gas accumulations in the Iranian Zagros foldbelt and contiguous offshore area: a review of the Palaeozoic petroleum system // Journal of Petroleum Geology. 2008. Vol. 31. P. 3–42.
12. Chen Y.A., Chu C.K., Chen Y.P., et al. Measurements of diffusion coefficient of methane in water/brine under high pressure // Terrestrial, Atmospheric and Oceanic Sciences. 2018. Vol. 29(5). P. 577–587.
13. Cheng Y., Hubbard C.G., Li L., et al. Reactive Transport Model of Sulfur Cycling as Impacted by Perchlorate and Nitrate Treatments // Environ. Sci. Technol. 2016. Vol. 50. P. 7010–7018.
14. Coombe D., Hubert C., Voordou G. Mechanistic Modelling of H2S Souring Treatments by Application of Nitrate or Nitrite. Canadian International Petroleum Conference, June 2004. Issue PETSOC-2004-292.
15. Dang C.T., Nghiem L.X., Chen Z., Nguyen Q.P. Modeling Low Salinity Waterflooding: Ion Exchange, Geochemistry and Wettability Alteration // SPE Annual Technical Conference and Exhibition. 2013. Issue SPE-166447-MS.
16. Ellis G.S., Zhang T., Ma Q., Tang Y. Empirical and theoretical evidence for the role of MgSO4 contact ion-pairs in thermochemical sulfate reduction // AGU Fall Meeting Abstracts. 2006. Vol. V11C-0596.
17. Fu Y., Van Berk W., Martin Schulz H. Hydrogen sulfide formation, fate, and behavior in anhydrite-sealed carbonate gas reservoirs: A three-dimensional reactive mass transport modeling approach // AAPG Bulletin. 2016. Vol. 100(5). P. 843–865.
18. Grathwohl P. Diffusion in Natural Porous Media Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. s.l. N.Y.: Springer New York, 1998.
19. Haghshenas M., Sepehrnoori K., Bryant S.L., Farhadnia M.A. Modeling and Simulation of Nitrate Injection for Reservoir Souring Remediation // SPE Journals. 2012. Vol. 17(3). P. 817–827.
20. He K., Zhang S., Mi J., Hu G. The speciation of aqueous sulfate and its implication on the initiation mechanisms of TSR at different temperatures // Applied Geochemistry. 2014. Vol. 43. P. 121–131
21. Helgeson H.C., Knox A.M., Owens C.E., Shock E.L. Petroleum, oil field waters, and authigenic mineral assembla ges: Are they in metastable equilibrium in hydrocarbon reservoirs? // Geochimica et Cosmochimica Acta. 1993. Vol. 57. P. 3295–3339.
22. Hemme C., Van Berk W. Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields // Applied science. 2018. Vol. 8(2282).
23. Kalantariasl A., Karimian Torghabeh A., Saboori R., et al. An integrated geological, engineering and geochemical approach for screening of H2S increasing mechanism in Shanul gas field coastal Fars Provinance, Zagros Basin, Iran // Journal of Natural Gas Science and Engineering. 2022. Vol. 102(3–4).
24. Kashfi M.S. Greater Persian Gulf Permian-Triassic stratigraphic nomenclature requires study // Oil and Gas Journal. 2001. Vol. 98(45). P. 36–44.
25. Konert G., Afifi M.A., Alhajri S.A., Droste H.J. Paleozoic Stratigraphy and Hydrocarbon Habitat of the Arabian Plate // GeoArabia. 2001. Vol. 6(3). P. 407–442.
26. Machel H. Bacterial and thermochemical sulfate reduction in diagenetic settings — Old and new insights // Sedimentary Geology. 2001. Vol. 140. P. 143–175.
27. Motiei H. Petroleum geology of Zagros // Geological Survey of Iran. 1995. Vol. 589. (In Farsi)
28. Mouthereau F., Tensi J., Bellahsen N., et al. Tertiary sequence of deformation in a thin-skinned/thick-skinned collidion belt: the Zagros Folded Belt (Fars, Iran) // Tectonics. 2007b. Vol. TC5006. 28 p.
29. Orr W.L. Rate and mechanism of non-microbial sulfate reduction: Thermochemical sulfate reduction // Lecture notes of GRI workshop. 1990. P. 5.
30. Parkhurst D.L., Appelo C.A.J. Description of Input and Examples for PHREEQC Version 3 —A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, 2013.
31. Peters K.E., Hantschel T., Kauerauf A.I., et al. Recent advances in petroleum system modeling of geochemical processes: TSR, SARA, and biodegradation. AAPG Search and Discovery article. 2013.
32. Rafiee P., Baghbani D., Aghanabati A., Arian M. Microbiostratigraphy and Lithostratigraphy of the Upper Permian Dalan Formation in Kuh-E-Surmeh (Zagros Basin, Southwest Iran) // International Journal of Geography and Geology. 2015. Vol. 4(4). P. 68–77.
33. Saberi M.H., Rabbani A.R. Origin of natural gases in the Permo-Triassic reservoirs of the Coastal Fars and Iranian sector of the Persian Gulf // Journal of Natural Gas Science and Engineering. 2015. Vol. 26. P. 558–569.
34. Seewald J.S. Organic-inorganic interactions in petroleumproducing sedimentary basins // Nature. 2003. Vol. 426. P. 327–333.
35. Sharma H., Mohanty K.K. An experimental and modeling study to investigate brine-rock interactions during low salinity water flooding in carbonates // Journal of Petroleum Science and Engineering. 2018. Vol. 165. P. 1021–1039.
36. Sprocati R., Masi M., Muniruzzaman M., Rolle M. Modeling electrokinetic transport and biogeochemical reactions in porous media: A multidimensional Nernst–Planck–Poisson approach with PHREEQC coupling // Advances in Water Resources. 2019. Vol. 127. P. 134–147.
37. Standen van P.J., Petersen J. First order exchange and spherical diffusion models of heap leaching in PhreeqC // The Journal of the Southern African institute of mining and metallurgy. 2018. Vol. 118(7). P. 681–694.
38. Tan S., Sekine Y., Shibuya T., et al. The role of hydrothermal sulfate reduction in the sulfur cycles within Europa: Laboratory experiments on sulfate reduction at 100 MPa // Icarus. 2021. Vol. 357.
39. Worden R.H., Smalley P.C. The thermal impact of sulfate reduction in the Khuff Formation // Geofluids. 1997. P. 423–426.
40. Worden R.H., Smalley P.C., Oxtoby N.H. The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs // Geochimica et Cosmochimica Act. 1996. Vol. 60(20). P. 3925–3931.
41. Zhang T., Amrani A., Ellis G.S., et al. Experimental investigation on thermochemical sulfate reduction by H2S initiation // Geochimica et Cosmochimica Acta. 2008. Vol. 72(14). P. 3518–3530.
42. Zhu G.Y., Zhang S.C., Liang Y.B. The controlling factors and distribution prediction of H2S formation in marine carbonate gas reservoir, China // Chinese Science Bulletin. 2007. Vol. 52. P. 150–163.
Review
For citations:
Gholizadeh H., Krasnova E.A., Korzun A.V., Rabbani A. Hydrogeochemical Modeling of Hydrogen Sulfide Formation in a Carbonate Reservoir: A Case Study of the Shanul Field, Southwest Iran. Moscow University Bulletin. Series 4. Geology. 2024;(6):163-172. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-163-172













