Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Stages of Paleoproterozoic chemical remagnetization of the Kivakka layered intrusion and its geodynamic position during the breakup of the Precambrian supercontinents

https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-21-31

Abstract

Detailed paleomagnetic studies of rocks of the Kivakka layared intrusion and dolerite dikes have been carried out. Four metachronous components of NRM have been identified. The high-temperature/high-coercivity component isolated in the rocks of the Kivakka layaered intrusion was formed during the crystallization of the massif 2.45 Ga. The three mechatronic components of NRM were formed as a result of the action of hydrothermal fluids at different stages of the evolution of the Kivakka layered intrusive at ca 2.05 Ga, ca 1.98 Ga and 1.88 Ga. Comparison of these components with different ages one for the Kivakka and Burakovsky layered intrusions, as well as Paleoproterozoic mafic dykes of the Paanayar structure showed that the slope of the Kivakka layared intrusive most likely occurred during the formation of the Lapland-Kola orogen between 2.05 and 1.98 Ga, and not during the introduction, as previously assumed.
Thermodynamic modeling of the formation of hydrothermal mineral parageneses for rocks of the Kivakka layered intrusive showed that in the case of hydrothermal action on olivinite, serpentine+magnetite paragenesis occurs in all cases with a small admixture of chlorite, actinolite. It is established that the formation of secondary magnetite is a characteristic of sulfate-free sodium chloride. Increasing the concentration of sodium chloride increases the amount of magnetite, which corresponds to the results of the experiments.

About the Authors

N. V. Lubnina
Lomonosov Moscow State University
Russian Federation

Natalia V. Lubnina

Moscow



A. Yu. Bychkov
Lomonosov Moscow State University
Russian Federation

Andrey Yu. Bychkov

Moscow



N. A. Tarasov
Lomonosov Moscow State University
Russian Federation

Nikolay A. Tarasov

Moscow



V. O. Osadchii
Institute of Experimental Mineralogy RAS
Russian Federation

Valentin O. Osadchii

Chernogolovka



E. P. Miklyaeva
Geological Institute RAS
Russian Federation

Elizaveta P. Miklyaeva

Moscow



References

1. Барков А.Ю., Ганнибал Л.Ф., Рюнгенен Г.И., Балашов Ю.А. Датирование цирконов из расслоенного массива Кивакка, Северная Карелия. Методы изотопной геологии // Тез. докл. Всесоюзной школы-семинара, 21–25 октября 1991 г., Звенигород. СПб., 1991. С. 21–23.

2. Бычкова Я.В., Бычков Д.А. Взаимодействие магма–порода в зоне контакта базит–гипербазитовой магмы Киваккского массива и архейских гнейсов // Материалы Всероссийской конференции Ломоносовские чтения-2019. Секция Геология. М.: Изд-во Моск. ун-та, 2019. https:// conf.msu.ru/rus/event/5604/

3. Бычкова Я.В., Бычков Д.А., Минервина Е.А. и др. Закономерности распределения редкоземельных элементов в Киваккском оливинит–габброноритовом расслоенном интрузиве (Северная Карелия) // Геохимия. 2019. № 64(2). С. 145–167.

4. Бычкова Я.В., Коптев-Дворников Е.В. Ритмическая расслоенность киваккского типа: геология, петрография, петрохимия, гипотеза формирования // Петрология. 2004. Т. 12, № 3. С. 281–302.

5. Коптев-Дворников Е.В., Киреев Б.С., Пчелинцева Н.Ф., Хворов Д.М. Распределение кумулятивных парагенезисов, породообразующих и второстепенных элементов в вертикальном разрезе Киваккского интрузива (Олангская группа интрузивов, Северная Карелия) // Петрология. 2001. № 9(1). С. 3–27.

6. Лубнина Н.В., Слабунов А.И. Карельский кратон в структуре неоархейского суперконтинента Кенорленд: новые палеомагнитные и изотопно-геохронологические данные по гранулитам Онежского комплекса // Вестн. Моск. ун-та. Сер. 4. Геология. 2017. № 5. С. 3–25.

7. Ревяко Н.М., Костицын Ю.А., Бычкова Я.В. Взаимодействие расплава основного состава с вмещающими породами при формировании расслоенного интрузива Кивакка (С. Карелия) // Петрология. 2012. № 20(2). С. 115–135.

8. Bychkova Y.V., Mikliaeva E.P., Koptev-Dvornikov E.V., et al. Proterozoic Kivakka layered mafic-ultramafic intrusion, Northern Karelia, Russia: Implications for the origin of granophyres of the Upper boundary group // Precambrian Research. 2019. Vol. 331. 105381.

9. Elming S.-A., Layer P., Söderlund U. Cooling history and age of magnetization of a deep intrusion: A new 1.7 Ga key pole and Svecofennian–post Svecofennian APWP for Baltica // Precamb. Res. 2018. https://doi.org/10.1016/j.precamres.2018.05.022.

10. Kirschvink J.L. The least-squares line and plane and the analysis of paleomagnetic data // Geophys. J.R. Astr. Soc. 1980. Vol. 62. P. 699–718.

11. Lubnina N., Pasenko A., Novikova M., et al. The East European craton at the end of the Paleoproterozoic: A new paleomagnetic pole of 1.79–1.75 Ga // Moscow Univ. Geol. Bull. 2016. Vol. 71 (1). P. 18–27.

12. Lubnina N.V., Pisarevsky S.A., Stepanova A.V., et al. Fennoscandia before Nuna: paleomagnetism of 1.98–1.96 Ga

13. mafic rocks of the Karelian craton and paleogeographic implications // Precambr. Res. 2017. Vol. 292. P. 1–12.

14. Mertanen S., Halls H.C., Vuollo J.I., et al. Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian Shield — implications for continental reconstructions. // Precambr. Res. 1999. Vol. 98. P. 197–221.

15. Mertanen S., Vuollo J.I., Huhma H., et al. Early Paleoproterozoic–Archean dykes and gneisses in Russian Karelia of the Fennoscandian Shield — new paleomagnetic, isotope age and geochemical investigations // Precamb. Res. 2006. Vol. 144. P. 239–260.

16. Pasenko A.M., Lubnina N.V. The Karelian Craton in the Paleoproterozoic: new paleomagnetic data // Moscow Univ. Geol. Bull. 2014. Vol. 69 (4). P. 189–197.

17. Pechersky D.M., Zakharov V.S., Lyubushin A.A. Continuous record of geomagnetic field variations during cooling of the Monchegorsk, Kivakka and Bushveld Early Proterozoic layered intrusions // Russian Journal of Earth Sciences. 2004. Vol. 6(6). P. 391–456.

18. Pesonen L.J., Elming S.-A., Mertanen S., et al. Palaeomagnetic configuration of continents during the Proterozoic // Tectonophys. 2003. Vol. 375 (1–4). P. 289–324.

19. Pisarevsky S.A., Bylund G. Paleomagnetism of 1780–1779 Ma mafic and composite intrusions of Smeland (Sweden): implications for the Mesoproterozoic supercontinent // Amer. J. Sci. 2010. Vol. 310. P. 1168–1186.

20. Salminen J., Halls H.C., Mertanen S., et al. Paleomagnetic and Geochronological Studies on Paleoproterozoic Diabase Dykes of Karelia, East Finland -Key for Testing the Superia Supercraton // Precambrian Research. 2014. Vol. 244. P. 87–99.

21. Shcherbakova V.V., Lubnina N.V., Shcherbakov V.P., et al. Paleointensity Determination on Paleoarchaean Dikes within the Vodlozerskii Terrane of the Karelian Craton // Izvestiya — Phys. of the Solid Earth. 2017. Vol. 53 (5). P. 714–732.

22. Turchenko S.I., Semenov V.S., Amelin Yu.V., et al. The Early Proterozoic riftogenic belt of Northern Karelia and associated Cu–Ni, PGE and Cu-Au mineralizations // Geol. Foren. Stockholm Forhund. 1991. 113. p. 70–72.

23. Zakharov V.S., Lubnina N.V., Stepanova A.V., Gerya T.V. Simultaneous intruding of mafic and felsic magmas into the extending continental crust caused by mantle plume underplating: 2D magmatic-thermomechanical modeling and implications for the Paleoproterozoic Karelian Craton // Tectonophysics. 2022. Vol. 822. 229173. doi: https://doi.org/10.1016/j.tecto.2021.229173

24. Zijderveld J.D.A. Demagnetization of rocks: analysis of results // Methods in Paleomagnetism. Amsterdam a.o. 1967. P. 254–286.


Review

For citations:


Lubnina N.V., Bychkov A.Yu., Tarasov N.A., Osadchii V.O., Miklyaeva E.P. Stages of Paleoproterozoic chemical remagnetization of the Kivakka layered intrusion and its geodynamic position during the breakup of the Precambrian supercontinents. Moscow University Bulletin. Series 4. Geology. 2024;(6):21-31. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-21-31

Views: 106


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)