Precambrian megacontinent NENA: stable configuration or Phanerozoic remagnetization?
https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-12-20
Abstract
We tested the coincidence of key poles, paleomagnetic poles, recalculated from the secondary different- age components of NRM and the reference Phanerozoic poles of the East European and Laurentia cratons. The main periods of such coincidences are highlighted. Based on the correlation of angular distances between pairs of the same-age poles of the East European and Superior cratons, three times poles (1.59–1.45 Ga, 580–550 Ma and 250–200 Ma) was found as a result of remagnetization during distroy of the supercontinent Pangaea. It is shown that the coincidence of the Precambrian pole with the Phanerozoic part of the APWP is not always a consequence of remagnetization, but may be due to the “repeatability” of the position of the same craton at the same position of the Globe as part of various Precambrian supercontinents. The potential “repeatability” of the position of the same tectonic block in the same area of the globe at different times in geologic history was carried out.. The results show that over a period of 2.5 Ga, the same block can be found more than twice in the same area of the Globe, which can explain the coincidence of poles of different ages. Distingsions between time of existences of NENA megacontinent and the Precambrian supercontinents Rodinia, Nuna/Columbia and Kenorland may be associated with introversal and extroversal mechanisms of supercontinent formation, respectively.
About the Authors
N. V. LubninaRussian Federation
Natalia V. Lubnina
Moscow
V. S. Zakharov
Russian Federation
Vladimir S. Zakharov
Moscow
References
1. Лубнина Н.В. Восточно-Европейский кратон в мезопротерозое: новые ключевые палеомагнитные полюсы // ДАН. 2009. Т. 428, № 2. С. 252–257.
2. Метелкин Д.В., Казанский А.Ю. Основы магнитотектоники: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2014. 127 с.
3. Bazhenov M.L., Levashova N.M., Meert J.G. How well do Precambrian paleomagnetic data agree with the Phanerozoic apparent polar wander path? A Baltica case study // Precambrian Research. 2016. Vol. 25. P. 80–90.
4. Buchan K.L., Mertanen S., Park R.G., et al. Comparising the drift of Laurentia and Baltica in the Proterozoic: The importance of key paleomagnetic poles // Tectonophysics. 2000. Vol. 319, No. 3. P. 167–198.
5. Buchan K.L., Mitchell R.N., Bleeker W., et al. Paleomagnetism of ca. 2.13–2.11 Ga Indin and ca. 1.885 Ga Ghostdyke swarms of the Slave craton: Implications for the Slave cratonAPW path and relative drift of Slave, Superior and Siberian cratons inthe Paleoproterozoic // Precambrian Research. 2016. Vol. 275. P. 151–175.
6. Cocks R.L., Torsvik T.H. Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity // Earth-Science Reviews. 2005. Vol. 72. P. 39–66.
7. Evans D.A.D., Pisarevsky S.A. Plate tectonics on the early Earth?—weighing the paleomagnetic evidence // Condie K., Pease V. (Eds.) When did Plate Tectonics Begin? Geological Society of America. 2008. Special Paper 440. P. 249–263.
8. Fedotova M.A., Khramov A.N., Pisakin B.N., Priyatkin A.A. Early Proterozoic palaeomagnetism: new results from the intrusives and related rocks of the Karelian, Belomorian and Kola provinces, eastern Fennoscandian Shield // Geophys. J. Int. 1999. Vol. 137. P. 691–712.
9. Gower C.F., Ryan A.F., Rivers T. Mid-Proterozoic Laurentia–Baltica: an overview of its geological evolution and a summary of the contributions made by this volume // Gower C.F., Rivers T., Ryan B. (Eds.), Mid-Proterozoic Laurentia–Baltica. Geological Association of Canada, St. John’s Newfounland, 1990. P. 23–40.
10. Korenaga J. Urey ratio and the structure and evolution of Earth’s mantle // Rev. Geophys. 2008. Vol. 46. P. 1–32.
11. Li Z.X., Bogdanova S.V., Collins A.S., et al. Assembly, configuration, and break-up history of Rodinia: a synthesis // Precam. Res. 2008. Vol. 160. P. 179–210.
12. Li Z.-X., Mitchell R.N., Spencer C.J., et al. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes // Precam. Res. 2019. Vol. 323. P. 1–5.
13. Lubnina N.V., Pisarevsky S.A., Stepanova A.V., et al. Fennoscandia before Nuna: paleomagnetism of 1.98–1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications // Precam. Res. 2017. Vol. 292. P. 1–12.
14. Lubnina N.V., Slabunov A.I. Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data // Moscow University Geol. Bull. 2011. Vol. 66, No. 4. P. 242–249.
15. Lubnina N.V., Zakharov V.S. Assessment of the Contribution of Secondary Metachronous Magnetization Components to the Precambrian Paleomagnetic Poles of the Karelian Craton // Moscow University Geol. Bull. 2018. Vol. 73, No. 6. P. 473–483.
16. Meert J.G., Pivarunas A.F., Evans D.A.D., et al. The magnificent seven: A proposal for modest revision of the Van der Voo (1990) quality index // Tectonophysics. 2020. Vol. 790. 228549.
17. Mertanen S. Multicomponent remanent magnetizations reflecting the geo-logical evolution of the Fennoscandian Shield–a palaeomagentic study with emphasis on the Svecofennian orogeny // Ph.D. thesis with original articles (I–IV). Geol. Surv. Finland, Espoo. 1995. 46 p.
18. Mertanen S., Vuollo J.I., Huhma H., et al. Early Paleoproterozoic–Archean dykes and gneisses in Russian Karelia of the Fennoscandian Shield—New paleomagnetic, isotope age and geochemical investigations // Precambr. Res. 2006. Vol. 144. P. 239–260.
19. Murphy J.B., Nance R.D. Speculations on the mechanisms for the formation and breakup of supercontinents // Geoscience Frontiers. 2013. Vol. 4. P. 185–194.
20. Pasenko A.M., Lubnina N.V. The Karelian craton in the Paleoproterozoic: New paleomagnetic data // Moscow University Geol. Bull. 2014. Vol. 69. No. 4. P. 189–197.
21. Pisarevsky S.A., Elming S.-A., Pesonen L.J., Li Z.-X. Mesoproterozoic paleogeography: Supercontinent and beyond // Precam. Res. 2014. Vol. 244. P. 207–225.
22. Rogers J.J.W., Santosh M. Confuguration of Columbia, a Mesoproterozoic supercontinent // Gondwana Res. 2002. Vol. 5(1) P. 5–22.
23. Shcherbakova V.V., Lubnina N.V., Shcherbakov V.P., et al. Paleointensity Determination on Paleoarchaean Dikes within the Vodlozerskii Terrane of the Karelian Craton // Izvestiya — Phys. of the Solid Earth. 2017. Vol. 53. No. 5. P. 714–732.
24. Slabunov A.I., Guo J., Balagansky V.V., et al. Early Precambrian crustal evolution of the Belomorian and Trans-North China orogens and supercontinents reconstruction // Geodynamics & Tectonophysics, 2017. Vol. 8. № 3. P. 569–572.
25. Smethurst M.A., Khramov A.N., Pisarevsky S. Palaeomagnetism of the Lower Ordovician Orthoceras Limestone, St. Petersburg, and a revised drift history for Baltica in the early Palaeozoic // Geophys. J. Int. 1998. Vol. 133. P. 44–56.
26. Torsvik T.H., Olesen O., Ryan P.D., Trench A. On the palaeogeography of Baltica during the Palaeozoic: new palaeomagnetic data from the Scandinavian Caledonides // Geophys. J. Int. 1990. Vol. 103. P. 261–279.
27. Torsvik T.H., Smethurst M.A., Meert J.G., et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic — a tale of Baltica and Laurentia // Earth Sci. Rev. 1996. Vol. 40. P. 229–258.
28. Van der Voo R. The reliability of paleomagnetic data // Tectonophysics. 1990. Vol. 184. P. 1–9.
29. Van Kranendonk M.J. Two types of Archean continental crust: plume and plate tectonics on Early Earth // Amer. J. Sci. 2010. Vol. 310. P. 1187–1209.
30. Veselovskiy R.V., Samsonov A.V., Stepanova A.V., et al. 1.86 Ga key paleomagnetic pole from the Murmansk craton intrusions–Eastern Murman Sill Province, NE Fennoscandia: Multidisciplinary approach and paleotectonic applications // Precam. Res. 2019. Vol. 324. P. 126–145.
31. Zwing A. Causes and Mechanism of Remagnetisation in Paleozoic rocks–a multidisciplinary approach: PhD thesis. München: Ludwig-Maximilan University, 2003. 159 p.
Review
For citations:
Lubnina N.V., Zakharov V.S. Precambrian megacontinent NENA: stable configuration or Phanerozoic remagnetization? Moscow University Bulletin. Series 4. Geology. 2024;(6):12-20. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-12-20