Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Petrological-Thermomechanical Modeling of the Northern Segment of the Kamchatka Subduction Zone: Thermal Structure, Dehydration, and Magmatism

https://doi.org/10.55959/MSU0579-9406-4-2024-63-5-130-141

Abstract

   Two series of numerical experiments were conducted simulating the initiation and evolution of the subduction of the Pacific plate beneath the Northern segment of Kamchatka subduction zone. In the first series, the self-developing submergence of the slab was modeled with the initial kinematic and physical parameters of the Kamchatka subduction zone. In the second series, a new element of the regional subduction model was introduced and tested — a zone of kinematic stabilization in the asthenospheric mantle to ensure a shallower trajectory of slab submergence. In the first series of numerical experiments (without the stabilization zone), a steeply dipping subduction not corresponding to the slab configuration according to existing geophysical data was obtained, with complete absence of magmatism during the first 14 million years of model time. In the second series (with the stabilization zone), the slab configuration according to seismotomography data was reproduced, and P-T trends (geotherms) for the surface of the slab and the base of the oceanic crust (Moho boundary) were constructed. Manifestations of volcanism in the second series were observed starting from 9 million years. The volcanism is predominantly acidic in composition, and volcanic structures are located at a distance of 200 km from the trench, which corresponds to the spatial arrangement of the East Kamchatka volcanic belt relative to the trench.

About the Authors

M. D. Eremin
Lomonosov Moscow State University
Russian Federation

Mikhail D. Eremin

Moscow



A. L. Perchuk
Lomonosov Moscow State University
Russian Federation

Alexey L. Perchuk

Moscow



V. S. Zakharov
Lomonosov Moscow State University
Russian Federation

Vladimir S. Zakharov

Moscow



T. V. Gerya
ETH-Zurich
Switzerland

Taras V. Gerya

Zurich



References

1. Авдейко Г.П., Палуева А.А., Хлебородова О.А. Геодинамические условия вулканизма и магмообразования Курило-Камчатской островодужной системы // Петрология. 2006. Т. 14, № 3. С. 248–265.

2. Авдейко Г.П., Попруженко С.В., Палуева А.А. Тектоническое развитие и вулканотектоническое районирование Курило-Камчатской островодужной системы // Геотектоника. 2002. № 4. С. 64–80.

3. Авдейко Г.П., Савельев Д.П., Попруженко С.В., Палуева А.А. Принцип актуализма: критерии для палеотектонических реконструкций на примере Курило-Камчатского региона // Вестник КРАУНЦ. Науки о Земле. 2003. № 1. С. 32–59.

4. Гордеев Е.И., Бергаль-Кувикас О.В. Строение и вулканизм зоны субдукции на Камчатке // Доклады Российской академии наук. Науки о Земле. 2022. Т. 502. С. 72–76.

5. Захаров В.С., Перчук А.Л., Завьялов, С.П. и др. Суперкомпьютерное моделирование континентальной коллизии в докембрии: эффект мощности литосферы // Вестн. Моск. ун-та. Сер. 4. Геология. 2015. № 2. С. 3–9.

6. Певзнер М.М. Голоценовый вулканизм Срединного хребта Камчатки // Труды Геологического института. Вып. 608. М.: ГЕОС, 2015. 252 с.

7. Селиверстов Н.И. Геодинамика зоны сочленения Курило-Камчатской и Алеутской островных дуг. 2009. http://repo.kscnet.ru/403/2/Seliverstov.pdf

8. Чебров Д.В., Матвеенко Е.А., Ромашева Е.И. и др. Сейсмичность Камчатки и Командорских островов в 2018–2019 гг. // Землетрясения Северной Евразии. 2023. Вып. 26 (2018–2019 гг.). С. 171–184.

9. Шанцер А.Е., Краевая Т.С. Формационные ряды наземного вулканического пояса: на примере позднего кайнозоя Камчатки. М.: Наука, 1980. 164 с.

10. Bergal-Kuvikas O., Bindeman I., Chugaev A., et al. Pleistocene-Holocene monogenetic volcanism at the Malko-Petropavlovsk zone of transverse dislocations on Kamchatka: Geochemical features and genesis // Pure and Applied Geophysics, 2022. 179(11), 3989–4011.

11. Bindeman I.N., Leonov V.L., Colón D.P., et al. Isotopic and Petrologic Investigation, and a Thermomechanical Model of Genesis of Large-Volume Rhyolites in Arc Environments: Karymshina Volcanic Complex, Kamchatka, Russia. Front // Earth Sci. 20196:238. doi: 10.3389/feart.2018.00238

12. Bittner D., Schmeling H. Numerical modeling of melting processes and induced diapirism in the lower crust // Geoph. J. Int. 1995. Vol. 123. P. 59–70.

13. Bürgmann R., Kogan M.G., Steblov G.M., et al. Interseismic Coupling and Asperity Distribution Along the Kamchatka Subduction Zone // Journal of Geophysical Research. 2005. Vol. 110. B07405.

14. Churikova T., Dorendorf F., Worner G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across‐arc geochemical variation // Journal of Petrology. 2001. Vol. 42, N 8. P. 1567–1593.

15. Clauser C., Huenges E. Thermal Conductivity of Rocks and Minerals. in Rock Physics and Phase Relations: A Handbook of Physical Constants / Ed. by T.J. Ahrens. Washington, AGU, USA, 1995. P. 105–126.

16. Gerya T.V., Yuen D.A. Characteristics-based marker-incell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties // Physics of the Earth and Planetary Interiors. 2003. Vol. 140. P. 293–318.

17. Gorbatov A., Kostoglodov V., Suarez G., et al. Seismicity and Structure of the Kamchatka Subduction Zone // J. Geophys. Res. 1997. V. 102. № B8. P. 17 883–17 898.

18. Iwasaki T., Levin V., Nikulin A., Iidaka T. Constraints on the Moho in Japan and Kamchatka // Tectonophysics. 2013. Vol. 609. P. 184–201.

19. Jiang G., Zhao D., Zhang G. Seismic tomography of the Pacific slab edge under Kamchatka // Tectonophysics. 2009. Vol. 465, N. 1–4. P. 190–203.

20. Katz R.F., Spiegelman M., Langmuir C.H. A new parameterization of hydrous mantle melting // Geochem. Geophys. Geosyst. 2003. Vol. 4 (9). 1073.

21. Konrad‐Schmolke M., Halama R., Manea V.C. Slab mantle dehydrates beneath Kamchatka — yet recycles water into the deep mantle // Geochemistry, Geophysics, Geosystems. 2016. Vol. 17. N 8. P. 2987–3007.

22. Konstantinovskaia E.A. Arc–continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia) // Tectonophysics. 2001. Vol. 333(1–2). P. 75–94.

23. Koulakov I., Shapiro N.M., Sens‐Schönfelder C., et al. Mantle and crustal sources of magmatic activity of Klyuchevskoy and surrounding volcanoes in Kamchatka inferred from earthquake tomography // Journal of Geophysical Research: Solid Earth. 2020. 125(10), e2020JB020097.

24. Lander A.V., Shapiro M.N. The origin of the modern Kamchatka subduction zone // Geophysical Monograph Series. 2007. Vol. 172. P. 57–64.

25. Laske G., Masters G., Ma Z., Pasyanos M. A 1-degree global model of Earth’s crust // Geophysical Research Abstracts. 2013. Vol. 15, Abstract EGU2013–2658.

26. Liu H., Xiao Y., Sun H., Tong F., et al. Trace elements and Li isotope compositions across the Kamchatka arc: Constraints on slab‐derived fluid sources // Journal of Geophysical Research: Solid Earth. 2020. Vol. 125, e2019JB019237.

27. Li Z.-H., Gerya T., Connolly J.A.D. Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling // Earth-Sci. Rev. 2019. Vol. 196, 102874.

28. Manea V.C., Manea M. Thermal models beneath Kamchatka and the Pacific Plate rejuvenation from a mantle plume impact // Geophys. Monogr. Ser. 2007. Vol. 172. P. 77–90.

29. Nizkous I.V., Sanina I.A., Kissling E., et al. Velocity properties of the lithosphere in the ocean-continent transition zone in the Kamchatka region from seismic tomography data // Izvestiya-Physics of the Solid Earth. 2006. Vol. 42. P. 286–296.

30. Perchuk A.L., Gerya T.V., Zakharov V.S. Griffin W.L. Depletion of the upper mantle by convergent tectonics in the Early Earth // Sci. Rep. 2021. Vol. 11. 21489.

31. Perchuk A. L., Zakharov V. S., Gerya T., Brown M. Hotter mantle but colder subduction in the Precambrian: What are the implications? // Precambr. Res. 2019. Vol. 330. P. 20–34.

32. Perchuk A.L., Zakharov V.S., Gerya T.V., Griffin W.L. Flat subduction in the Early Earth: The key role of discrete eclogitization kinetics // Gondwana Research. 2023. Vol. 119. P. 186–203.

33. Plechov P., Blundy J., Nekrylov N., et al. Petrology and Volatile Content of Magmas Erupted from Tolbachik Volcano, Kamchatka, 2012–13 // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 182–199.

34. Portnyagin M., Manea V.C. Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression // Geology. 2008. Vol. 36, N 7. P. 519–522.

35. Ranalli G. Rheology of the Earth. London: Chapman & Hall, 1995. 413 p.

36. Rudnick R.L., Gao S. Composition of the continental crust // Treatise on Geochem. 2003. Vol. 3. P. 1–64.

37. Schmidt M.W., Poli S. Devolatilization During Subduction // Treatise on Geochem. 2014. P. 669–701.

38. Sizova E., Gerya T., Brown M., Perchuk L.L. Subduction styles in the Precambrian: insight from numerical experiments // Lithos. 2010. Vol. 116. P. 209–229.

39. Stern R.J. Subduction zones // Review of Geophysics. 2002. Vol. 40, 1012.

40. Syracuse E., van Keken P., Abers G., et al. The global range of subduction zone thermal models // Physics of the Earth and Planetary Interiors. 2010. Vol. 183. P. 73–90.

41. Turcotte D.L., Schubert G. Geodynamics. Cambridge: Cambridge Univ. Press, 2014. 472 p.


Review

For citations:


Eremin M.D., Perchuk A.L., Zakharov V.S., Gerya T.V. Petrological-Thermomechanical Modeling of the Northern Segment of the Kamchatka Subduction Zone: Thermal Structure, Dehydration, and Magmatism. Moscow University Bulletin. Series 4. Geology. 2024;(5):130-141. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-5-130-141

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)