Structure of the basement of the near-Laptev part of the Eurasian basin according to geological and geophysical data
https://doi.org/10.55959/MSU0579-9406-4-2024-63-4-102-115
Abstract
The near-Laptev part of the Eurasian basin is the area of transition from modern spreading to intraplate rifting. We propose an approach to the construction of a 3D model of the basement of the Laptev Sea part of the Eurasian basin based on the linkage of all currently available geological and geophysical data. The structure of the acoustic basement of the Eurasian basin is characterized by alternating troughs and highs in cross-section. The sparse seismic data do not allow us to directly trace the strike of these structures, but they can be correlated with the linearity established by gravity and magnetic data and related to the sequential opening of the basin. For the Laptev Sea part of the Eurasian basin, where linearity is no longer traceable from magnetic data, we propose a method of determining the strike of the basement structures on the basis of seismic stratigraphic analysis. The new 3D model of the acoustic basement in the studied area provided the basis for the tectonic scheme of the entire Eurasian basin. The model reflects the main stages of basin development: continental rifting up to 56 Ma, normal spreading 56–45 Ma, ultra-slow spreading 45–34 Ma, ultra-ultra-slow spreading 34–20 Ma. The southern part of the study area is overlain by a sedimentary cover with an age of 20 Ma and younger, which is associated with the cessation of spreading here no later than 20 Ma.
About the Authors
K. F. AleshinaRussian Federation
Kseniya F. Aleshina
Moscow
A. M. Nikishin
Russian Federation
Anatoly M. Nikishin
Moscow
E. A. Rodina
Russian Federation
Elizaveta A. Rodina
Moscow
V. E. Verzhbitsky
Russian Federation
Vladimir E. Verzhbitsky
Moscow
V. Yu. Tatarinov
Russian Federation
Viktor Yu. Tatarinov
Moscow
References
1. Глебовский В.Ю., Черных А.А., Каминский В.Д. и др. Основные итоги и планы дальнейших магнитометрических и гравиметрических исследований в Северном Ледовитом океане // 70 лет в Арктике, Антарктике и Мировом океане / Под ред. В.Д. Каминского, Г.П. Аветисова, В.Л. Иванова. СПб.: ВНИИОкеангеология, 2018. С. 196–208.
2. Каминский Д.В., Чамов Н.П., Крылов А.А. и др. Первая находка аутигенных карбонатов на прилаптевоморском фланге хребта Гаккеля (Северный Ледовитый океан) // Доклады РАН. 2023. Т. 512. С. 219–224.
3. Карасик А.М. Аномальное магнитное поле Евразизского бассейна Северного Ледовитого Океана // Доклады Академии наук СССР. 1973. Т. 211. С. 86–89.
4. Никишин А.М., Петров Е.И., Старцева К.Ф. и др. Сейсмостратиграфия, палеогеография и палеотектоника Арктического глубоководного бассейна и его российских шельфов // Труды ГИН РАН, 2022. Т. 632. 156 с.
5. Петров О.В., Никишин А.М., Петров Е.И. и др. Результаты стратиграфического бурения в Восточно-Сибирском море с целью геологического изучения зоны сочленения структур континентального шельфа и глубоководных акваторий Северного Ледовитого Океана // Доклады РАН. 2023. T. 512. № 2. С. 261–271.
6. Родина Е.А., Никишин А.М., Алёшина К.Ф. Проявления магматизма на При-Лаптевоморской части континентальной окраины Евразийского бассейна // Тектоника и Геодинамика земной коры и мантии: фундаментальные проблемы-2024. Материалы LV Тектонического совещания. М., 2024. Т. 2. С. 127–131.
7. Черных А.А., Крылов А.А. Седиментогенез в котловине Амундсена в свете геофизических данных и материалов бурения на хребте Ломоносова // Доклады РАН. 2011. Т. 440. С. 516–520.
8. Backman J., Jakobsson M., Frank M., et al. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge // Paleoceanography. 2008. V. 23.
9. Bird K.J., Houseknecht D.W., Pitman J.K. Geology and Assessment of Undiscovered Oil and Gas Resources of the Hope Basin Province // Moore T.E., Gautier D.L. (Eds.), The 2008 Circum-Arctic Resource Appraisal. U.S. Geological Survey Professional Paper 1824, Reston, Virginia, 2017. P. 1–9.
10. Brozena J.M., Childers V.A., Lawver L.A., et al. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development // Geology. 2003. V. 31. P. 825.
11. Chernykh A.A., Yakovenko I. V., Korneva M.S., Glebovsky V.Y. Digital Models of the Deep Structure of the Earth’s Crust in the Eurasian Basin of the Arctic Ocean // Geotectonics. 2023. V. 57. P. S34–S52.
12. Funck T., Shimeld J., Salisbury M.H. Magmatic and rifting-related features of the Lomonosov Ridge, and relationships to the continent–ocean transition zone in the Amundsen Basin, Arctic Ocean // Geophys. J. Int. 2022. V. 229. P. 1309–1337.
13. Gaina C., Werner S.C., Saltus R., Maus S. Chapter 3 Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic // Geol. Soc. London, Mem. 2011. V. 35. P. 39–48.
14. Glebovsky V.Y., Kaminsky V.D., Minakov A.N., et al. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field // Geotectonics. 2006. V. 40. P. 263–281.
15. Jakobsson M., Mayer L.A., Bringensparr C., et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0 // Sci. Data. 2020. V. 7. P. 176.
16. Jokat W., O’Connor J., Hauff F., et al. Ultraslow Spreading and Volcanism at the Eastern End of Gakkel Ridge, Arctic Ocean // Geochemistry, Geophys. Geosystems. 2019. V. 20. P. 6033–6050.
17. Jokat W., Schmidt-Aursch M.C. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean // Geophys. J. Int. 2007. V. 168. P. 983–998.
18. Lutz R., Franke D., Berglar K., et al. Evidence for mantle exhumation since the early evolution of the slow-spreading Gakkel Ridge, Arctic Ocean // J. Geodyn. 2018. V. 118. P. 154–165.
19. Michael P.J., Langmuir C.H., Dick H.J.B., et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean // Nature. 2003. V. 423. P. 956–961.
20. Nikishin A.M., Petrov E.I., Cloetingh S., et al. Arctic ocean mega project: Paper 2 — Arctic stratigraphy and regional tectonic structure // Earth-Science Rev. 2021. V. 217. P. 103581. https://doi.org/10.1016/j.earscirev.2021.103581
21. Petrov O. V., Smelror M. (Eds.) Tectonics of the Arctic, Springer Geology // Springer International Publishing, Cham. 2021.
22. Piskarev A., Poselov V., Kaminsky V. (Eds.) Geologic Structures of the Arctic Basin. Springer International Publishing, Cham. 2019.
23. Sauter D., Cannat M., Rouméjon S., et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years // Nat. Geosci. 2013. V. 6. P. 314–320.
24. Stein R., Jokat W., Niessen F., Weigelt E. Exploring the long-term Cenozoic Arctic Ocean climate history: a challenge within the International Ocean Discovery Program (IODP) // Arktos. 2015. V. 1. P. 3.
25. Theunissen T., Huismans R.S. Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones // Nat. Commun. 2022. V. 13. P. 1634.
26. Weigelt E., Jokat W., Franke D. Seismostratigraphy of the Siberian Sector of the Arctic Ocean and adjacent Laptev Sea Shelf // J. Geophys. Res. Solid Earth, 2014. V. 119. P. 5275–5289.
Review
For citations:
Aleshina K.F., Nikishin A.M., Rodina E.A., Verzhbitsky V.E., Tatarinov V.Yu. Structure of the basement of the near-Laptev part of the Eurasian basin according to geological and geophysical data. Moscow University Bulletin. Series 4. Geology. 2024;(4):102-115. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-4-102-115













