Theoretical analysis of the application of pseudo-noise signals in marine pulse electromagnetic prospecting
https://doi.org/10.55959/MSU0579-9406-4-2024-63-2-108-118
Abstract
Using numerical modeling of a useful signal based on a characteristic geoelectric model of underwater permafrost and real recordings of a noise signal, we conducted a comparative analysis of noise suppression during transient sounding using a marine towed dipole-dipole array in accumulation modes with opposite-polar current pulses and pseudo-noise signals (PNS). For a series of current sequences in the form of PNS with different durations and numbers of pulses, as well as for a signal in the accumulation mode, with the superposition of an identical noise signal, transient sounding curves were obtained corresponding to the geoelectric model under consideration at a recording time of the order of 8–13 s per station. Based on the results of comparison of the obtained curves reconstructed from noisy synthetic data in the accumulatio n and PNS modes, it was established that in the PNS mode with pulses of duration 100 μs and 1 ms, the relative error in the PNS mode on average over the profile turns out to be significantly lower (up to 1.5 times) than a similar one error in the accumulation mode, and remains within an acceptable value (up to several percent) until later times.
About the Authors
A. V. KoshurnikovRussian Federation
Andrey V. Koshurnikov
Moscow
D. A. Alekseev
Russian Federation
Dmitriy A. Alekseev
Dolgoprudny
Moscow
P. Yu. Pushkarev
Russian Federation
Pavel Yu. Pushkarev
Moscow
A. Yu. Gunar
Russian Federation
Aleksey Yu. Gunar
Moscow
E. I. Balikhin
Russian Federation
Ermolay I. Balikhin
Moscow
References
1. Великин А.Б., Великин А.А. Новый корреляционный метод импульсной электроразведки с шумоподобными сигналами CTEM // Разведка и охрана недр. 2016. № 2. С. 47–54.
2. Гончаров А.А., Алексеев Д.А., Кошурников А.В. и др. Применение псевдослучайных кодовых последовательностей для повышения эффек тивности зондирования становлением поля в ближней зоне на Арктическом шельфе // Физика Земли. 2022. № 5. С. 158–170.
3. Ильичев П.В., Бобровский В.В. Применение шумоподобных сигналов в системах активной геоэлектроразведки (результаты математического моделирования и полевого эксперимента) // Сейсмические приборы. 2014. Т. 50, № 2. С. 5–19.
4. Кауфман А.А., Алексеев Д.А., Ористальо М. Принципы электромагнитных методов наземной геофизики. Тверь: Международная Ассоциация “АИС”, 2016. 558 с.
5. Кошурников А.В. Основы комплексного геокриолого-геофизического анализа для исследования многолетнемерзлых пород и газогидратов на Арктическом шельфе России // Вестник МГУ. Сер. 4. Геология. 2020. № 3. С. 116–125.
6. Жданов М.С. Теория обратных задач и регуляризации в геофизике. М.: Научный Мир, 2007. 712 с.
7. Петров А.А. Возможности метода становления электрического поля при поисках углеводородов в шельфовых зонах // Геофизика. 2000. № 5. С. 21–26.
8. Светов Б.С. Основы геоэлектрики М.: ЛКИ, 2008. 656 с.
9. Светов Б.С., Алексеев Д.А., Агеев В.В. и др. Применение шумоподобных сигналов в зондированиях становлением поля // Геофизика. 2012. № 1. С. 52–60.
10. Duncan P.M., Ywang A. Edwards R.N. , et al. Тhe development and applications of a wide band electromagnetic sounding system using pseudonoise source // Geophysics. 1980. V. 45. No. 8. P. 1276–1296.
11. Giannino F., Leucci G. Electromagnetic Methods in Geophysics: Applications in GeoRadar, FDEM, TDEM, and AEM. Wiley, 2021. 304 p.
12. Helwig S.L. VIBROTEM ein vergleich zu long-offset transient electromagnetic (LOTEM) in theorie und praxis. Inaugural dissertation zur erlangung des doktorgrades der mathematisch-naturwissenschaftlichen fakultat der universitat zu Koln. 1999.
13. Key K. 1D inversion of multicomponent, multi-frequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers // Geophysics. 2009. 74. P. F9–F20.
14. Krylov A.A., Ananiev R.A., Chernykh, D.V., et al. A Complex of Marine Geophysical Methods for Studying Gas Emission Process on the Arctic Shelf // Sensors. 2023. No. 23. P. 3872.
15. Nabighian M.N., Macnae J.C. Time domain electromagnetic prospecting methods / in M.N. Nabighian, ed., Electromagnetic methods in applied geophysics: SEG, Investigations in Geophysics. 1991. V. 2. No. 3. P. 427–520.
16. Shakhova N., Semiletov I., Gustafsson O., et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf // Nature Communications. 2017. No. 8. P. 15872.
17. Svetov B.S., Alekseev D.A., Yakovlev A.G. On implementation of noise-like signals in time-domain EM imaging // Geobaikal 2012 — 2nd International Research and Application Conference on Electromagnetic Research Methods and Integrated Geophysical Data Interpretation. 2012. P. S4.
18. Zepernick H-J., Finger A. Pseudo Random Signal Processing. Theory and Application. Wiley. 2005. 432 p.
Review
For citations:
Koshurnikov A.V., Alekseev D.A., Pushkarev P.Yu., Gunar A.Yu., Balikhin E.I. Theoretical analysis of the application of pseudo-noise signals in marine pulse electromagnetic prospecting. Moscow University Bulletin. Series 4. Geology. 2024;1(2):108-118. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-2-108-118