Preview

ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ

Расширенный поиск

Запасы критического минерального сырья и дополнительные потребности в нем в эпоху энергетического перехода

https://doi.org/10.55959/MSU0579-9406-4-2024-63-2-3-16

Аннотация

На основе компьютерной модели выполнена оценка будущей дополнительной потребности в минеральных материалах для производства ветровых турбин, солнечных панелей, систем накопления и хранения электроэнергии и электромобилей, необходимых для реализации сценария перехода к малоуглеродной энергетике, предложенного Международным энергетическим агентством. Спрос на некоторые критически важные металлы и индустриальные минералы был сопоставлен c их имеющимися промышленными запасами и ресурсами. Поставки критического минерального сырья для некоторых технологий энергетического перехода могут явиться новым вызовом устойчивому развитию минерально-сырьевой базы мировой экономики, а в перспективе оказаться сдерживающим фактором в использовании возобновляемых источников энергии.

Об авторах

А. Л. Дергачев
Московский государственный университет имени М.В. Ломоносова
Россия

Александр Лукич Дергачев

Москва



Е. М. Шемякина
Российский университет дружбы народов
Россия

Елизавета Михайловна Шемякина

Москва



Список литературы

1. Дергачев А.Л., Шемякина Е.М. Критическое мине-ральное сырье для малоуглеродной энергетики // Вестн. Моск. ун-та. Сер. 4. Геология. 2023. № 3. С. 3–10.

2. Парижское соглашение (Париж, 12 декабря 2015 года) // United Nations Treaty Series, No. 54113 (2016). https://treaties.un.org/doc/Publication/UNTS/No%20Volume/54113/Part/I-54113-0800000280458f37.pdf (дата обращения: 01.01.2023).

3. Carrara S., Alves Dias P., Plazzotta B., Pavel C. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system // Brussels: European Parliament. 2020. URL: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2011/471604/IPOL-JOIN_ET(2011)471604_EN.pdf (дата обращения: 01.01.2023).

4. Dominish E., Teske S., Florin N. Responsible miner-als sourcing for renewable energy // Sydney: Institute for sustainable futures, University of Technology. 2019. URL: https://earthworks.org/assets/uploads/2019/04/MCEC_UTS_Report_lowres-1.pdf (дата обращения: 14.06.2022).

5. Grandell L., Lehtila A., Kivinen M., et al. Role of critical metals in the future markets of clean energy technologies // Renewable Energy. 2016. Vol. 95. P. 53–62.

6. IEA (International Energy Agency) 2016. Energy tech-nology perspectives 2016: Towards Sustainable Urban Energy Systems // Paris: IEA. 2016. URL: https://www.iea.org/reports/energy-technology-perspectives-2016 (дата обращения: 17.03.2022).

7. IEA 2017. Energy technology perspectives 2017: Cata-lysing Energy Technology Transformations // Paris: IEA. 2017. URL: https://www.iea.org/topics/energy-technology-perspectives (дата обращения: 10.01.2022).

8. IEA 2019. CO 2 emissions from fuel combustion 2019 // Paris: IEA. 2019. URL: https://www.iea.org/reports/co2-emissions-from-fuelcombustion-2019 (дата обращения: 30.12.2022).

9. IRENA (International Renewable Energy Agen-cy) 2019. Global energy transformation: A roadmap to 2050. URL: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf?rev=6ea97044a1274c6c8ffe4a116ab17b8f (дата обращения: 30.12.2022).

10. IRENA 2020. International renewable capacity statistics 2020. URL: https://www.irena.org/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf?rev=1a7674fe44044cfc8788af909f28496e

11. IRENA 2021. International renewable capacity statistics 2021. URL: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021 (дата обращения: 30.12.2022).

12. Mineral Commodities Summaries 2022. URL: https://doi.org/10.3133/mcs2022 (дата обращения: 09.09.2022).

13. Moss R.L., Tzimas E., Kara H., et al. Critical metals in strategic energy technologies: Assessing rare metals as supply — chain bottlenecks in low-carbon energy technologies // Publications Office of the European Union. 2011. URL: https://op.europa.eu/en/publication-detail/-/publication/2239d6b7-cda8-4570-a9f0-13ad60ce3f11/language-en (дата обращения: 05.04.2022).

14. Nassar N., Wilburn D., Goonan T. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios // Applied Energy. Vol. 183. 2016. P. 1209–1226.

15. Öhrlund I. Future metal demand from photovoltaic cells and wind turbines: Investigating the potential risk of disabling a shift to renewable energy systems // European Parliament. 2012. URL: http://www.europarl.europa.eu/RegData/etudes/etudes/join/2011/471604/IPOL-JOIN_ET(2011)471604_EN.pdf (дата обращения: 05.04.2022).

16. Sibley S. F. Overview of flow studies for recycling metal commodities in the United States // U.S. Geological Survey Circular 1196. 2011. P. AA1–AA25.

17. Speirs J., McGlade C., Slade R. Uncertainty in the avail-ability of natural resources: fossil fuels, critical metals and biomass // Energy Policy. 2015. Vol. 87. P. 654–664.

18. Vaalma C., Buchholz D., Weil M., et al. A cost and resource analysis of sodium-ion batteries // Nature Reviews Materials. 2018. Vol. 3. P.18013.

19. World Bank 2017. The growing role of minerals and metals for a low carbon future // Washington, DC: World Bank. 2017. URL: https://openknowledge.worldbank.org/handle/10986/28312 (дата обращения: 10.01.2022).

20. World Bank 2020. Minerals for climate action: The mineral intensity of the clean energy transition // Washing-ton, DC: World Bank. 2020. URL: https://www.commdev.org/publications/minerals-for-climate-action-the-mineral-intensity-of-the-clean-energy-transition/ (дата обращения: 10.01.2022).

21. Zhang Z.-X, Hou D.-F., Aladejare A., et al. World mineral loss and possibility to increase ore recovery ratio in mining production // International Journal of mining, reclamation and environment. 2021. Vol. 35. № 9. P. 670–691.


Рецензия

Для цитирования:


Дергачев А.Л., Шемякина Е.М. Запасы критического минерального сырья и дополнительные потребности в нем в эпоху энергетического перехода. ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ. 2024;1(2):3-16. https://doi.org/10.55959/MSU0579-9406-4-2024-63-2-3-16

For citation:


Dergachev A.L., Shemyakina E.M. Reserves of critical mineral materials and additional demand for them in era of energy transition. Moscow University Bulletin. Series 4. Geology. 2024;1(2):3-16. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2024-63-2-3-16

Просмотров: 89


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)