Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Bindeman I.N. Petrology of the Golygin ignimbrite (South Kamchatka)

https://doi.org/10.55959/MSU0579-9406-4-2023-63-4-86-98

Abstract

This paper presents the results of a detailed petrological study of a continuous section of the Golygin ignimbrite, related to the Pauzhetka caldera-forming eruption (443±8 ka BP). The continuous zoning of the studied sequence suggests that a large magmatic chamber, emptied during the eruption, was also zoned and had significant vertical dimensions. Our research included determining the bulk composition of rocks, studying samples of the Goligin ignimbrites in thin sections, and detailed studying of quartz and melt inclusions in it. The roof of the magmatic chamber was at a depth of about 5 km; amphibole and plagioclase crystalloclasts in rocks at the base of the sequence show evidence of formation in a more basitic melt at a depth of 24 to 25 km. The composition of the magmatic melt reconstructed from melt inclusions in quartz from this sequence corresponds to medium-K rhyolites (wt %): SiO2 78.1–77.9, Al2O3 12.7–12, FeOt 0.8–0.1, MgO 0.1–0.0, CaO 1.0–0.2, K2O 4.3–3.8, Na2O 4.9–3.3, Cl2 0.1–0.2. Crystallization temperatures calculated for various minerals and their parageneses vary in the range 1009–784°С, which, together with estimates of formation depths of 25 km to 5 km, may reflect nucleation of magmatic melt, its ascent and evolution in a relatively shallow chamber where it was slowly cooled and crystallized. The maximum water content of the magmatic melt during quartz crystallization was estimated at 4.1 to 7.5 wt% H2O.

About the Authors

M. D. Shchekleina
Lomonosov Moscow State University, Fersman Mineralogical Museum RAS
Russian Federation


P. Yu. Plechov
Lomonosov Moscow State University, Fersman Mineralogical Museum RAS
Russian Federation


V. D. Shcherbakov
Lomonosov Moscow State University
Russian Federation


V. O. Davydova
Lomonosov Moscow State University
Russian Federation


I. N. Bindeman
University of Oregon
United States


References

1. Авдейко Г.П., Савельев Д.П., Попруженко С.В., Палуева А.А. Принцип актуализма: критерии для палеотектонических реконструкций на примере Курило-Камчатского региона // Вестн. КРАУНЦ. Науки о земле. 2003. № 1. С. 32–59.

2. Авдейко Г.П., Палуева А.А., Хлебородова О.А. Геодинамические условия вулканизма и магмообразования Курило-Камчатской островодужной системы // Петрология. 2006. Т. 14, № 3. С. 248–265.

3. Амосова A.A., Пантеева С.В., Татаринова В.В., Чубаров В.М., Финкельштейн А.Л. Рентгенофлуоресцентное определение основных породообразующих элементов из образцов массой 50 и 110 мг // Аналитика и контроль. 2015. Т. 19, № 2. С. 130–138.

4. Апрелков С.Е. Игнимбриты Голыгинских гор (Южная Камчатка) // Тр. Лаб. вулканол. 1961. Вып. 20. С. 92–96.

5. Апрелков С.Е. Тектоника и история вулканизма Южной Камчатки // Тектоника. 1971. № 2. С. 105–111.

6. Долгоживущий центр эндогенной активности Южной Камчатки / Под ред. Ю.П. Масуренкова. М.: Наука, 1980. С. 171.

7. Егоров О.Н. Центры эндогенной активности (вулканические системы). М.: Наука, 1984.

8. Малеев Е.Ф. Пирокластическая природа игнимбритов юга Камчатки // Тр. лаб. вулканол. 1961. Вып. 20. С. 97–101.

9. Мелекесцев И.В., Брайцева О.А., Эрлих Э.Н., Кожемяка Н.Н. Вулканические горы и равнины // Камчатка, Курильские и Командорские острова / Под ред. И.В. Лучицкого. М.: Наука, 1974. 438 с.

10. Плечов П.Ю. Методы изучения флюидных и расплавных включений М.: КДУ, 2014. 268 с.

11. Плечов П.Ю., Балашова А.Л., Дирксен О.В. Дегазация магмы кальдерообразующего извержения Курильского озера 7600 лет назад и ее влияние на климат // Доклады Академии наук. 2010. Т. 433, № 3. С. 386–389.

12. Рычагов С.Н., Жатнуев Н.С., Коробов А.Д. и др. Структура гидротермальной системы. М., 1993. 239 c.

13. Смирнов С.З., Рыбин А.В., Соколова Е.Н. и др. Кислые магмы кальдерных извержений острова Итуруп: первые результаты исследования расплавных включений во вкрапленниках пемз кальдеры Львиная Пасть и перешейка Ветровой. 2017.

14. Шеймович В.С. Игнимбриты Камчатки. М.: Недра, 1979. 179 с.

15. Шеймович В.С. Особенности развития дочетвертичных вулкано-тектонических депрессий на Камчатке // Геотектоника. 1974. № ??. С. 118–125.

16. Щеклеина М.Д., Плечов П.Ю., Биндеман И.Н. и др. Реконструкция условий извержения Голыгинских игнимбритов (Южная Камчатка) // Актуальные проблемы геологии, геофизики и геоэкологии. 2021. №??. С. 169.

17. Barbee O., Chesner C., Deering C. Quartz crystals in Toba rhyolites show textures symptomatic of rapid crystallization // American Mineralogist: Journal of Earth and Planetary Materials. 2020. Т. 105, № 2. P. 194–226

18. Bindeman I.N., Leonov V.L., Izbekov P.E et al. Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions // J. Volcanology and Geothermal Res. 2010. Т. 189, № 1–2. P. 57–80.

19. Chamberlain K.J., Morgan D.J., Wilson C.J.N. Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry //Contributions to Mineralogy and Petrology. 2014. Т. 168, № 1. P. 1–24.

20. Danyushevsky L.V., Plechov P. Petrolog3: Integrated software for modeling crystallization processes // Geochemistry, Geophysics, Geosystems. 2011. Т. 12, № 7.

21. Davydova V. O., Bindeman I.N., Shchekleina M.D., Rychagov S.N. Pauzhetka Caldera (South Kamchatka): Еxploring Temporal Evolution and Origin of Voluminous Silicic Magmatism // Petrology. 2022. Т. 30. № 5. P. 462–478.

22. Erlich E. Geology of the calderas of Kamchatka and Kurile Islands with comparison to calderas of Japan and the Aleutians, Alaska // US Geological Survey. 1986. № 86–291.

23. Fisher R.V., Schmincke H.U. Pyroclastic rocks. — Springer Science & Business Media, 2012. 465 p.

24. Gillespie M., Styles M. BGS rock classification scheme. Vol. 1. Classification of igneous rocks. 1999. 52 p.

25. Gorbatov A., Kostoglodov V., Suarez G., Gordeev E. Seismicity and structure of the Kamchatka subduction zone // Journal of Geophysical Research: Solid Earth. 1997. Т. 102, № B8. P. 17883–17898.

26. Holland T., Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry // Contributions to mineralogy and petrology. 1994. Т. 116, № 4. P. 433–447.

27. Jarosewich E., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. Т. 4, № 1. P. 43–47.

28. Jiang G., Zhao D., Zhang G. Seismic tomography of the Pacific slab edge under Kamchatka // Tectonophysics. 2009. Т. 465, № 1–4. P. 190–203.

29. Kotov A.A., Smirnov S.Z., Plechov P.Y. et al. Method for determining water content in natural rhyolitic melts by Raman spectroscopy and electron microprobe analysis // Petrology. 2021. Т. 29, № 4. P. 386–403.

30. Koulakov I.Y., Dobretsov N.L., Bushenkova N.A., Yakovlev A.V. Slab shape in subduction zones beneath the Kurile–Kamchatka and Aleutian arcs based on regional tomography results // Russian Geology and Geophysics. 2011. Т. 52, № 6. P. 650–667.

31. Lipman P.W. Calderas // Encyclopedia of volcanoes. 2000. P. 643–662.

32. Moore G., Vennemann T., Carmichael I.S.E. An empirical model for the solubility of H2O in magmas to 3 kilobars // American Mineralogist. 1998. Т. 83, № 1–2. P. 36–42.

33. Pamukcu A.S., Gualda G.A.R., Begue F., Gravley D.M. Melt inclusion shapes: Timekeepers of short-lived giant magma bodies // Geology. 2015. Т. 43, № 11. P. 947–950.

34. Ponomareva V., Bubenshchikova N., Portnyagin M. et al. Large-magnitude Pauzhetka caldera-forming eruption in Kamchatka: Astrochronologic age, composition and tephra dispersal // J. Volcanol. and Geothermal Res. 2018. Т. 366. P. 1–12.

35. Portnyagin M.V., Ponomareva V.V., Zelenin E.A. et al. TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific) // Earth System Science Data. 2020. Т. 12, № 1. P. 469–486.

36. Ridolfi F., Renzulli A., Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes // Contributions to Mineralogy and Petrology. 2010. Т. 160, № 1. P. 45–66.

37. Wark D.A., Watson E.B. TitaniQ: a titanium-in-quartz geothermometer //Contributions to Mineralogy and Petrology. 2006. Т. 152, № 6. P. 743–754.

38. Wilke S., Holtz F., Neave D.A., Almeev R. The effect of anorthite content and water on quartz–feldspar cotectic compositions in the rhyolitic system and implications for geobarometry // J. Petrol. 2017. Т. 58, № 4. P. 789–818.


Review

For citations:


Shchekleina M.D., Plechov P.Yu., Shcherbakov V.D., Davydova V.O., Bindeman I.N. Bindeman I.N. Petrology of the Golygin ignimbrite (South Kamchatka). Moscow University Bulletin. Series 4. Geology. 2023;(4):86-98. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2023-63-4-86-98

Views: 178


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)