Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Genetic types of mud volcanism in the Cydonia and Acidalia regions of Mars

https://doi.org/10.55959/MSU0579-9406-4-2023-63-2-3-13

Abstract

Small cone/mound-shaped structures are widespread on the northern plains of Mars. They are usually interpreted as mud volcanoes because of their close morphological resemblance to mud volcanoes on Earth (for example, in Azerbaijan and near the Sea of Azov). If this interpretation is correct, the small cones/mounds could be evidence of the existence of an extensive subsurface mud source, which, in turn, could be formed by the bottom sediments of a large water reservoir (ocean) that existed on the northern plains of Mars in the past eras of this planet’s geological history. Compared to mud volcanoes on Earth, the morphology of small cones/mounds on Mars varies over a wider range and, which may be due to a greater variety of mechanisms of formation of Martian cones/ mounds. In this study, we studied the morphology of small hills in the Cydonia and eastern Acidalia regions, which are located near the dichotomous boundary within the northern plains of Mars and found that there are 5types of cones/mounds, whose morphology probably characterizes the water-mud reservoir features.

About the Authors

J. Chu
Lomonosov Moscow State University
Russian Federation

Chu Jun

Moscow



M. A. Ivanov
Vernadsky Institute of Geochemistry and Analytical Chemistry
Russian Federation

Mikhail A. Ivanov

Moscow



A. M. Nikishin
Lomonosov Moscow State University
Russian Federation

Anatoly M. Nikishin

Moscow



References

1. Allen C.C., Oehler D.Z., Baker D.M., Mud volcanoes — Anew class of sites for geological and astrobiological exploration of Mars // Lunar Planet. Sci. XXXX. 2009. Abstract 1749.

2. Barlow N.G., Boyce J.M., Costard F.M. et al. Standardizing the nomenclature of martian impact crater ejecta morphologies // J. Geophys. Res. 2000. Vol. 105. P. 26733–26738.

3. Bridges J.C., Seabrook A.M. Rothery D.A. et al. Selection of the landing site in Isidis Planitia of Mars probe Beagle 2// J. Geophys. Res. 2003. Vol.108, 5001. doi: 10.1029/2001JE001820

4. Carr M.H., Head J.W. Oceans on Mars: an assessment of the observational evidence and possible fate // J. Geophys. Res. Planets. 2003. Vol. 108.

5. Citron R., Manga M., Hemingway D. Timing of oceans on Mars from shoreline deformation// Nature. 2018. Vol.555. P.643–646. URL: https://doi.org/10.1038/nature26144.

6. Clifford S.M., Parker T.J. The evolution of the martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains // Icarus. 2001. Vol. 154. P. 40–79.

7. Davis P.A., Tanaka K.L. Curvilinear ridges in Isidis Planitia, Mars— The result of mud volcanism?// Lunar Planet. Sci. 1995. Vol. XXIV. P. 321–322.

8. de Pablo M., Komatsu G. Possible pingo fields in the Utopia basin, Mars: Geological and climatical implication// Icarus. 2009. Vol. 199. P. 49–74. doi: 10.1016/j.icarus.2008.09.007.

9. Di Pietro I. et al. Evidence of mud volcanism due to the rapid compaction of Martian tsunami deposits in southeastern Acidalia Planitia, Mars // Icarus. 2021. Vol. 354. URL: https://doi.org/10.1016/j.icarus.2020.114096

10. Farrand, W.H., Gaddis, L.R., Keszthlyi, L., Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data// J. Geophys. Res. 2005. Vol. 110. doi:10.1029/2004JE002297

11. Frey H.M., Lowry B.L., Chase S.A. Pseudocraters on Mars // J. Geophys. Res. 1979. Vol. 84. P. 8075–8086.

12. Frey H.M., Jarosewich M. Subkilometer Martian volcanoes: Properties and possible terrestrial analogs// J. Geophys. Res. 1982. Vol. 87. P. 9867–9879.

13. Head III J.W., Kreslavsky M., Hiesinger H. et al. Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data // Geophys. Res. Lett. 1998. Vol. 25. P. 4401–4404.

14. Head J.W., Hiesinger H., Ivanov M.A. et al. Possible ancient oceans on Mars: Evidence from Mars orbiter laser altimeter data // Science. 1999. Vol. 286. P. 2134–2137.

15. Hiesinger H., Head III J.W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data // J. Geophys. Res. 2000. Vol. 105. P. 11999–12022.

16. Hiesinger H., Rohkamp D., Sturm S. et al. Geology, ages, morphology, and morphometry of thumbprint terrain in Isidis Planitia, Mars // Lunar and Planetary Science Conference. 2009. Vol. 40. P. 1953.

17. Kreslavsky M.A., Head J.W. Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water // J. Geophys. Res. Planets. 2002. Vol. 107.

18. Ivanov M.A., Hiesinger H., Erkeling G. et al. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean// Icarus. 2014. Vol. 228. P. 121–140.

19. Ivanov M.A., Erkeling G., Hiesinger H. et al. Topography of the Deuteronilus contact on Mars: Evidence for an ancient water/mud ocean and long-wavelength topographic readjustments// Planetary and Space Science. 2017. P.1–22.

20. Ivanov M.A. Hiesinger H. The Acidalia Mensa region on Mars: A key element to test the Mars ocean hypothesis// Icarus. 2020. Vol.349.

21. Kite E.S., Hovius N., Hillier J.K., Besserer J. Candidate mud volcanoes in the Northern Plains of Mars // American Geophysical Union. Fall Meeting. 2007 (abstract #V13B-1346).

22. Lockwood J.F., Kargel J.S., Strom R.B. Thumbprint terrain on the Northern Plains: a glacial hypothesis// Abstracts of the Lunar and Planetary Science Conference. 1992. Vol.23. P.795.

23. Lucchitta B.K. Mars and Еarth: comparison of cold-climate features// Icarus 1981. Vol.45. P.264–303.

24. McGill G.E. Buried topography of Utopia, Mars: Persistence of a giant impact depression// J. Geophys. Res. 1989. Vol. 94, N B3, P. 2753–2759.

25. McGill G.E., Hills L.S. Origin of Giant Martian polygons// J. Geophys. Res. Planets. 1992. Vol. 97. P. 2633–2647.

26. McGill G.E. Geologic Map of Cydonia Mensae-Southern Acidalia Planitia, Mars: Quadrangles MTM 40007, 40012, 40017, 45007, 45012, and 45017. 2005. USGS

27. McGowan E. Spatial distribution of putative water related features in southern Acidalia/Cydonia Mensae, Mars// Icarus. 2009. Vol. 202. P. 78–89.

28. McGowan E.M., McGill G.E. The Utopia/Isidis overlap; Possible conduit for mud volcanism// Lunar Planet. Sci. 2010. Vol. 41. Abstract 1070.

29. Oehler D.Z., Allen C.C. Mud volcanoes in the martian lowlands: Potential windows to fluid-rich samples from depth// Lunar Planet. Sci. Vol.XXXX. 2009. Abstract 1034.

30. Oehler D.Z., Allen C.C. Evidence for pervasive mud volcanism in Acidalia Planitia, Mars// Icarus. 2010. Vol.208. P. 636–657.

31. Okubo C.H. Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars // Icarus. 2016. Vol. 269. P. 23–37.

32. Parker T.J., Saunders R.S., Schneeberger D.M. Transitional morphology in West Deuteronilus Mensae, Mars: Implications for modification of the lowland upland boundary // Icarus. 1989. Vol. 82. P. 111–145.

33. Parker T.J., Gorsline D.S., Saunders R.S. et al. Coastal geomorphology of the martian northern plains // J. Geophys. Res. 1993. Vol. 98. P. 11061–11078.

34. Perron J.T., Mitrovica J.X., Manga M. et al. Evidence for an ancient martian ocean in the topography of deformed shorelines// Nature. 2007. Vol.447. P.840–843.

35. Pechmann J.C. The origin of polygonal troughs on the northern plains of Mars// Icarus. 1980. Vol.42. P.185–210.

36. Plescia J.B. Cinder cones of Isidis and Elysium. Rep. // Planet. Geol. Geophys. 1980. Program1, 263–265.

37. Rodríguez J.A.P., Tanaka K.L., Kargel J.S. et al. Formation and disruption of aquifers in southwestern Chryse Planitia, Mars// Icarus. 2007. Vol.191(2). P.545–567.

38. Salvatore M.R., Christense P.R. On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitae, Mars// J. Geophys. Res.: Planets. 2014. P. 2437–2456.

39. Scott D.H., Tanaka K.L. Geologic map of the western equatorial region of Mars // U.S. Geol. Surv. Geol. Invest. Ser., Map I-1802A. 1986.

40. Skinner Jr.J.A., Mazzini A. Martian mud volcanism: Terrestrial analogs and implications for formational scenarios// Marine Petrol. 2009. Geol. doi: 10.1016/j.marpetgeo.2009.02.006.

41. Skinner Jr.J.A., Tanaka K.L. Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars // Icarus. 2007. Vol. 186 (1). P. 41–59.

42. Tanaka K.L., Banerdt W.B. The interior lowland plains unit of Mars: Evidence for a possible mud ocean and induced tectonic deformation// Lunar Planet. Sci. 2000. Vol.XXXI. Abstract 2041.

43. Tanaka K.L., Joyal T., Wenker A. The Isidis Plains Unit, Mars: Possible catastrophic origin, tectonic tilting, and sediment loading// Lunar Planet. Sci. 2000. Vol. XXXI. Abstract 2023.

44. Tanaka K.L Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars// J. Geophys. Res. 1997. Vol. 102. P. 4131–4150.

45. Tanaka K.L., Skinner Jr.J.A., Hare T.M. et al. Resurfacing history of the Northern Plains of Mars based on geologic mapping of Mars Global Surveyor data // J. Geophys. Res. 2003. Vol. 108 (E4). GDS 24-1-GDS 24-32. doi: 10.1029/2002JE001908.

46. Tanaka K.L. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars // Nature. 2005. Vol. 437. P. 991–994.

47. Tanaka K.L., Skinner J.A., Hare T.M. Geologic map of the Northern Plains of Mars // US Geological Survey Sci. Inv, Map. 2005. P. 2888.

48. Tanaka K.L., Rodríguez J.A.P., Skinner Jr.J.A et al. North polar region of Mars: Advances in stratigraphy, structure, and erosional modification// Icarus. 2008. Vol.196(2). P.318–358.

49. Witbeck N.E., Underwood J.R.Jr. Geologic map of the Mare Acidalium quadrangle, Mars (revised): U.S. Geological Survey Miscellaneous Investigations Series I–1614, scale 1:5,000,000. 1984.


Review

For citations:


Chu J., Ivanov M.A., Nikishin A.M. Genetic types of mud volcanism in the Cydonia and Acidalia regions of Mars. Moscow University Bulletin. Series 4. Geology. 2023;(2):3-13. (In Russ.) https://doi.org/10.55959/MSU0579-9406-4-2023-63-2-3-13

Views: 336


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)