Mathematical modeling of seismic wave kinematics in complex media
https://doi.org/10.33623/0579-9406-2022-6-167-178
Abstract
A variational method of mathematical modeling of seismic wave kinematics has been developed at the Department of Seismometry and Geoacoustics of the Faculty of Geology of Lomonosov Moscow State University for studying the kinematics of seismic waves of different types in two-dimensional isotropic media (gradient and layered) is presented. The problem of determining the trajectories of seismic rays was solved by integrating using the Runge-Kutta method a system of differential equations with given initial conditions. The algorithm was studied in order to verify the accuracy and correctness of the solutions obtained, as well as its testing on a number of theoretical models of heterogeneous media. The developed ray tracing method was used to study the effect of the velocity gradient and the geometry of seismic boundaries on the kinematics of reflected waves in multilayer media. Based on the results of mathematical modeling of the kinematics of reflected waves, conclusions were drawn about the limits of applicability of simplified models of horizontally layered media, which often approximate complex inhomogeneous media.
About the Authors
P. Yu. StepanovRussian Federation
Pavel Yu. Stepanov
Moscow
Ju. A. Gomanyuk
Russian Federation
Julia A. Gomanyuk
Moscow
References
1. Галактионова А.А., Белоносов А.С. Алгоритм решения прямой кинематической задачи сейсмики в трехмерных неоднородных изотропных средах // Математические заметки СВФУ. 2020. Т. 27, № 1. С. 53–68.
2. Ермаков А.П., Степанов П.Ю. Сейсморазведка неоднородных сред. М.: КДУ, Университетская книга, 2018. 122 с.
3. Облогина Т.И. Кинематическая теория сейсмических волн в неоднородных анизотропных средах // Вестн. Моск. ун-та. 1998. № 6. С. 52–59.
4. Облогина Т.И., Степанов П.Ю. Ефимова Е.А., Пийп В.Б. Сейсмика неоднородных сред в Московском университете // Тр. конф. «Ломоносовская школа МГУ по геофизическим методам исследования земных недр: прошлое, настоящее, будущее». М.: Изд-во Моск. ун-та, 2004. С. 51–53.
5. Тульчинский П.Г. Трассирование луча по конечноразностной двумерной сейсмической модели // Компьютерная математика. 2009. № 1. С. 29–36.
6. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969. 424 с.
7. Cao S., Greenhalgh S. Finite-difference solution of the eikonal equation using an efficient, first-arrival, wavefront tracking scheme // Geophysics. 1994. Vol. 59, N 4. P. 632–643.
8. Cerveny V. Seismic Ray Theory. 1st Ed. Cambridge: Cambridge Univ. Press, 2001. 713 p.
9. Gjoystdal H., Iversen E., Laurain R. et al. K. Review of ray theory applications in modelling and imaging of seismic data // Stud. Geophys. Geod. 2002. Vol. 46. P. 113-164.
10. Klimes L., Kvasnicka M. 3D network ray tracing // Geophys. J. Int. 1994. Vol. 116. P. 726–738.
11. Moser T.J., Nolet G., Snieder R. Ray bending revisted // Bull. Seismol. Soc. Amer. 1992. Vol. 82, N 1. P. 259–288.
12. Rawlinson N., Hauser J., Sambridge M. Seismic ray tracing and wavefront tracking in laterally heterogeneous media // Advances in Geophysics. 2007. Vol. 49. P. 203–267.
13. Sethian J.A., Popovici A.M. 3-D traveltime computation using the fast marching method // Geophysics. 1999. Vol. 64, N 2. P. 516–523.
14. Virieux J., Farra V. Ray tracing in 3D complex isotropic media: An analysis of the problem // Geophysics. 1991. Vol. 56, N 12. P. 2057–2069.
15. Xu T., Li F., Wu Z., Wu C., Gao E., Zhou B., Zhang Z. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models // Tectonophysics. 2014. Vol. 627. 10 p.
16. Yang W. A Basical study on two-point seismic ray tracing // 2003. 8 p.
Review
For citations:
Stepanov P.Yu., Gomanyuk J.A. Mathematical modeling of seismic wave kinematics in complex media. Moscow University Bulletin. Series 4. Geology. 2022;(6):167-178. (In Russ.) https://doi.org/10.33623/0579-9406-2022-6-167-178