Preview

ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ

Расширенный поиск

Условия формирования кремнистых пород нижнего-среднего кембрия юго-востока Сибирской платформы

https://doi.org/10.33623/0579-9406-2022-6-71-82

Аннотация

На основании изучения микроструктурных и геохимических особенностей силицитов иниканской свиты (Є1–2in) из береговых обнажений р. Юдома установлено, что ключевая роль в их формировании принадлежит, по-видимому, кремнистым организмам — радиоляриям и губкам. Значения отношения Ge/Si указывают на отсутствие прямого вклада гидротерм в образование силицитов в этой части палеобассейна. Изучаемые халцедон-кварцевые породы сформировались из первично биогенного кремнезема, подвергшегося диагенетическому перераспределению и постдиагенетическим процессам.

Об авторах

С. И. Меренкова
Институт океанологии имени П.П. Ширшова РАН; Московский государственный университет имени М.В. Ломоносова
Россия

 Софья Ивановна Меренкова 

Москва



Г. А. Калмыков
Московский государственный университет имени М.В. Ломоносова
Россия

 Георгий Александрович Калмыков 

Москва



Р. Р. Габдуллин
Московский государственный университет имени М.В. Ломоносова
Россия

Руслан Рустемович Габдуллин 

Москва



Е. В. Карпова
Московский государственный университет имени М.В. Ломоносова
Россия

 Евгения Владимировна Карпова 

Москва



А. Ю. Пузик
Пермский государственный национальный исследовательский университет
Россия

 Алексей Юрьевич Пузик 

Пермь



И. В. Бадьянова
Пермский государственный национальный исследовательский университет
Россия

Ирина Владиславовна Бадьянова 

Пермь



М. А. Волкова
Пермский государственный национальный исследовательский университет
Россия

 Маргарита Александровна Волкова 

Пермь



К. П. Казымов
Пермский государственный национальный исследовательский университет
Россия

Константин Павлович Казымов 

Пермь



Список литературы

1. Бахтуров С.Ф. Битуминозные карбонатно-сланцевые формации Восточной Сибири. Новосибирск: Наука, 1985.

2. Бахтуров С.Ф., Евтушенко В.М., Переладов В.С. Куонамская битуминозная карбонатно-сланцевая формация. Новосибирск: Наука, 1988.

3. Волохин Ю.Г. Кремневые породы Сихотэ-Алиня и проблема происхождения геосинклинальных кремневых толщ. Владивосток: Изд-во ДВНЦ АН СССР, 1985.

4. Григорьев Н.А. Распределение химических элементов в верхней части континентальной коры. Екатеринбург: Изд-во УрО РАН, 2009.

5. Евтушенко В.М. О формировании кремнистых пород в кембрии восточной части Сибирской платформы // Тр. Сиб. НИИ геологии, геофизики и минер. сырья. 1978. Вып. 258. С. 45–57.

6. Евтушенко В.М. Условии формировании отложений доманиковскоro типа в кембрии Сибирской платформы // Геология и геофизика. 1979. № 6. С. 8–15.

7. Казанский Ю.П., Казаринов В.П., Резанова Η.М. Развитие идей А.Д. Архангельского о происхождении кремнистых пород // Геология и геофизика. 1965. № 9. С. 84–92.

8. Левитан М.А. Биогенный кремнезем как источник вещества для образования кремней в осадках Тихого океана: Автореф. канд. дисс. М., 1975.

9. Левитан М.А., Донцова Е.И., Лисицын А.П., Богданов Ю.А. Генезис кремней в осадках Тихого океана по отношению изотопов кислорода и анализу особенностей их распределения // Геохимия. 1975. № 3. С. 420-429.

10. Лисицын А.П., Виноградов М.С. Глобальные закономерности распределения жизни в океане и их отражение в составе донных осадков // Изв. АН СССР. Сер. геол. 1982. № 4. С. 5–20.

11. Hepvчев С.Г. Уран и жизнь в истории Земли. Л.: Издво ВНИГРИ, 1982. 208 с. Пешехонов Л.В. К вопросу образования кремнистых сланцев древних толщ юго-западных отрогов Кузнецкого Алатау // Изв. Томск. политех. ин-та. 1970. Т. 185. С. 34–37.

12. Стратиграфия нефтегазоносных бассейнов Сибири. Кембрий Сибирской платформы: В 2 т. Т. 1. Стратиграфия / Ред. А.Э. Конторович. Новосибирск: Изд-во ИНГГ СО РАН, 2016. 497 с.

13. Страхов Η.М. О некоторых вопросах геохимии кремнезема // Геохимия кремнезема. М., 1966. С. 5–8.

14. Фролов В.Т. Литология: Учеб. пособие. Кн. 1. М.: Издво Моск. ун-та, 1992. 336 с.

15. Юдович Я.Э., Кетрис М. П. Геохимия черных сланцев. Л.: Наука, 1988. 272 с.

16. Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). Сыктывкар: Геопринт, 2011. 742 c.

17. Anders A.M., Sletten R.S., Derry L.A., Hallet B. Germanium/silicon ratios in the Copper River Basin, Alaska: weathering and partitioning in periglacial versus glacial environments // J. Geophys. Res. 2003. Vol. 108. DOI: 10.1029/2003JF000026.

18. Bergquist P.R. Sponges. Berkeley: University of California. 1978. 268 p.

19. Bernstein L.R. Germanium geochemistry and mineralogy // Geochim. et Cosmochim. Acta. 1985. Vol. 49, N 11. P. 2409–2422.

20. Bernstein L.R., Waychunas G.A. Germanium crystal chemistry in hematite and goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution and in stottite // Geochim. et Cosmochim. Acta. 1987. Vol. 51. P. 623–630.

21. Bohrmann G., Abelmann A., Gersonde R. et al. Pure siliceous ooze, a diagenetic environment for early chert formation // Geology. 1994. Vol. 22, N 3. P. 207–210.

22. Brengman L.A., Fedo C.M. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (~2.7 Ga) Abitibi Greenstone Belt, Canada // Geochim. et Cosmochim. Acta. 2018. Vol. 227. P. 227–245.

23. Carrera M.G., Botting, J.P. Evolutionary History of Cambrian Spiculate Sponges: Implications for the Cambrian Evolutionary Fauna // PALAIOS. 2008. Vol. 23, N 3. P. 124–138. DOI: 10.2110/palo.2006.p06-089r

24. Chen D.Z., Wang J.G., Qing H.R. et al. Hydrothermal venting activities in the Early Cambrian South China: Petrological, geochronological and stable isotopic constraints // Chem. Geol. 2009. Vol. 258. P. 168–181.

25. Cui H., Xiao S., Zhou C. et al. Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China // Sediment. Geol. 2016. Vol. 341. P. 134–146. DOI: 10.1016/j.sedgeo.2016.05.008

26. Dong L., Shen B., Lee C.-T.A. et al. Germanium/silicon of the Ediacaran-Cambrian Laobao cherts: Implications for the bedded chert formation and paleoenvironment interpretations // Geochemistry, Geophysics, Geosystems. 2015. Vol. 16, N 3. P. 751–763. DOI: 10.1002/2014gc005595

27. Fan H.F., Wen H.J., Zhu X.K. et al. Hydrothermal activity during Ediacaran-Cambrian transition: Silicon isotopic evidence // Precambrian Res. 2013. Vol. 224. P. 23–35.

28. Finks R.M. Paleozoic Hexactinellida: Morphology and phylogeny, // Treatise on Invertebrate Paleontology. P. E. Porifera (revised). Vol. 2. Geol. Soc. Amer. and University of Kansas, Boulder, Colorado and Lawrence, Kansas, 2003а. P. 135–154.

29. Finks R.M. Paleozoic Demospongea: Morphology and phylogeny // Treatise on invertebrate paleontology. P.E. Porifera (revised). Vol. 2. Geol. Soc. Amer. and University of Kansas, Boulder, Colorado and Lawrence, Kansas, 2003б. P. 63–80

30. Fischer W.W., Knoll A.H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation // Geol. Soc. Amer. Bull. 2009. Vol. 121, N 1–2. P 222–235.

31. Froelich P.N., Hambrick G.A., Andreae M.O. et al. The geochemistry of inorganic germanium in natural waters // J. Geophys. Res. 1985. Vol. 90. P. 1133–1141. DOI: 10.1029/JC090iC01p01133.

32. Froelich P.N., Mortlock R.A., Shemesh A. Inorganic germanium and silica in the Indian Ocean: Biological fractionation during (Ge/Si) opal formation // Global Biogeochem. Cycles. 1989. Vol. 3. P. 79–88. DOI: 10.1029/GB003i001p00079

33. Gao P., He Z., Lash G.G. et al. Origin of chert nodules in the Ediacaran Doushantuo Formation black shales from Yangtze Block, South China // Marine and Petrol. Geol. 2020. Vol. 114. 104227. DOI: 10.1016/j.marpetgeo.2020.104227

34. Hesse R. Origin of chert: diagenesis of biogenic siliceous sediments // Diagenesis. Geoscience Canada Reprint Ser. Geol. Assoc. of Canada. 1990a. P. 227—251.

35. Hesse R. Silica diagenesis: origin of inorganic and replacement cherts // Diagenesis. Geoscience Canada Reprint Ser. Geol. Assoc. of Canada. 1990б. P. 253~275.

36. Holland H.D. Metals in black shales — A reassessment // Econ. Geol. Bull. Soc. Econ. Geologists. 1979. Vol. 74. P. 295–314.

37. Hu WX., Kang X., Cao J. et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin. // Nat. Commun. 2018. Vol. 9. 5131. DOI: 10.1038/s41467-018-07267-x

38. Knoll A.H. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats // Philosophical Transactions of the Royal Soc. B: Biol. Sci. 1985. Vol. 311 (1148). P. 111–122. DOI: 10.1098/rstb.1985.0143.

39. Kurtz A.C., Derry L.A., Chadwick O.A. Germanium-silicon fractionation in the weathering environment // Geochim. et Cosmochim. Acta. 2002. Vol. 66. P. 1525–1537.

40. Li C., Yang S. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? // Amer. J. Sci. 2010. Vol. 310, N 2. P. 111–127. DOI: 10.2475/02.2010.03.

41. Loi A., Dabard M.-P. Controls of sea level fluctuations on the formation of Ordovician siliceous nodules in terrigenous offshore environments // Sediment. Geol. 2002. Vol. 153, N 3–4. P. 65–84. DOI: 10.1016/s0037-0738(02)00102-1.

42. Maliva R.G. Silicification in the Belt Supergroup (Mesoproterozoic), Glacier National Park, Montana, USA // Sediment. 2001. Vol. 48. P. 887–896.

43. Maliva R.G., Knoll A.H., Siever R. Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle // Palaios. 1989. Vol. 4. N. 6. P. 519–532. DOI: 10.2307/3514743.

44. Maliva R.G., Knoll A.H., Simonson B.M. Secular change in the Precambrian silica cycle: Insights from chert petrology // Geol. Soc. Amer. Bull. 2005. Vol. 117, N 7–8. P. 835–845. DOI: 10.1130/B25555.1

45. Mortlock R.A., Froelich P.N. Continental weathering of germanium: In the global river discharge // Geochim. Et Cosmochim. Acta. 1987. Vol. 51, N 8. P. 2075–2082.

46. Mortlock R.A., Froelich P.N., Feely R.A. et al. Silica and germanium in Pacific Ocean hydrothermal vents and plumes // Earth Planet. Sci. Lett. 1993. Vol. 119. P. 365–378.

47. Murray R., Jones D., Brink M. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet // Geology. 1992. Vol. 20, N 3. P. 271–274.

48. Niewöhner C., Hensen C., Kasten S. et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia // Geochim. et Cosmochim. Acta. 1998. Vol. 62, N 3. P. 455–464. DOI: 10.1016/s0016-7037(98)00055-6.

49. Palumbi S. Tactics of acclimation: Morphological changes of sponges in an unpredictable environment // Science. 1984. Vol. 225. P. 1478–1480.

50. Pokrovski G.S., Martin F., Hazemann J.-L., Schott, J. An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution // Chem. Geol. 2000. Vol. 163, N 1–4. P. 151–165. DOI: 10.1016/s0009-2541(99)00102-3.

51. Pokrovski G.S., Schott J. Experimental study of the complexation of silicon and germanium with aqueous organic species: implications for Ge and Si transport and Ge/Si ratio in natural waters // Geochim. et Cosmochim. Acta. 1998. Vol. 62. P. 3413–3428.

52. Raiswell R., Fisher Q. J. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition // J. Geol. Soc. 2000. Vol. 157, N 1. P. 239–251. DOI: 10.1144/jgs.157.1.239.

53. Ramseyer K., Amthor J.E., Matter A. et al. Primary silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, Sultanate of Oman // Marine and Petrol. Geol. 2013. Vol. 39, N 1. P. 187–197. DOI: 10.1016/j.marpetgeo.2012.08.0.

54. Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms // Sedimentology. 2000. Vol. 47. P. 179–214. DOI: 10.1046/j.1365-3091.2000.00003.x.

55. Scribner A.M., Kurtz A.C., Chadwick O.A. Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides // Earth and Planet. Sci. Lett. 2006. Vol. 243, N 3–4. P. 760–770. DOI: 10.1016/j.epsl.2006.01.051.

56. Shen B., Lee C.-T.A., Xiao S. Germanium/silica ratios in diagenetic chert nodules from the Ediacaran Doushantuo Formation, South China // Chem. Geol. 2011. Vol. 280, N 3–4. P. 323–335. DOI: 10.1016/j.chemgeo.2010.11.019.

57. Shen B., Ma H., Ye H. et al. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China // Precambrian Res. 2018. Vol. 310. P. 213–228.

58. Siever R. The silica cycle in the Precambrian // Geochim. et Cosmochim. Acta. 1992. Vol. 56. P. 3265–3272.

59. Stefurak E.J.T., Lowe D.R., Zentner D., Fischer W.W. Sedimentology and geochemistry of Archean silica granules // Geol. Soc. Amer. Bull. 2015. B31181.1. DOI: 10.1130/b31181.1.

60. Trammer J. The relation of the morphological type of a sponge to water turbulence // Speculations in Science and Technology, Lausanne. 1983. Vol. 6. P. 143–146.

61. Treguer P., Nelson D.M., van Bennekom A.J. et al. The silica balance in the world ocean: A reestimate // Science. 1995. Vol. 268, N 5209. P. 375–379.

62. Tribovillard N. The Ge/Si ratio as a tool to recognize bio genic silica in chert. // Comptes Rendus Geosci. 2013. Vol. 345. P. 160–165.

63. Tribovillard N., Bout-Roumazeilles V., Riboulleau A. et al. Transfer of germanium to marine sediments: Insights from its accumulation in radiolarites and authigenic capture under reducing conditions. Some examples through geological ages // Chem. Geol. 2011. Vol. 282. P. 20–130.

64. Vacelet J. La place de spongiaires dans les systemes trophiques marins // Biologie des spongiaires: Colloques Internat. du Centre National de la Recherche Scientifique. Actes 291. Paris, 1978. P. 259–270.

65. van den Boorn S.H.J.M., van Bergen M.J., Vroon P.Z. et al. Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: Implications for Early Archaean marine environments // Geochim. et Cosmochim. Acta. 2010. Vol. 74, N 3. P. 1077–1103.

66. Wang J.G., Chen D.Z., Wang D. et al. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran–Cambrian transition // Sedimentology. 2012. Vol. 59. P. 809–829.

67. Warburton F. Influence of currents on form of sponges // Science. 1960. Vol. 132. P. 89.

68. Zhang H., Fan H., Wen H. et al. Oceanic chemistry recorded by cherts during the early Cambrian Explosion, South China // Palaeogeogr., Palaeoclimat., Palaeoecol. 2020. Vol. 109961. DOI: 10.1016/j.palaeo.2020.109961

69. Zhou X., Chen D., Zhang L. et al. Silica — rich seawater in the early Cambrian: Sedimentological evidence from bedded cherts // Terra Nova. 2021. Vol. 33, N 5. P. 494–501. DOI: 10.1111/ter.12541.


Рецензия

Для цитирования:


Меренкова С.И., Калмыков Г.А., Габдуллин Р.Р., Карпова Е.В., Пузик А.Ю., Бадьянова И.В., Волкова М.А., Казымов К.П. Условия формирования кремнистых пород нижнего-среднего кембрия юго-востока Сибирской платформы. ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ. 2022;(6):71-82. https://doi.org/10.33623/0579-9406-2022-6-71-82

For citation:


Merenkova S.I., Kalmykov G.A., Gabdullin R.R., Karpova E.V., Puzik A.Yu., Badianova I.V., Volkova M.A., Kazymov K.P. Conditions for the formation of siliceous rocks of the Lower-Middle Cambrian in the southeast of the Siberian Platform. Moscow University Bulletin. Series 4. Geology. 2022;(6):71-82. (In Russ.) https://doi.org/10.33623/0579-9406-2022-6-71-82

Просмотров: 266


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)