Изменение форм нахождения металлов при фотохимическом окислении органоминеральных соединений в болотных и речных водах
https://doi.org/10.33623/0579-9406-2022-4-157-163
Аннотация
Взаимодействие органического вещества с ионами металлов играет ключевую роль в их миграции в водных экосистемах, в формировании качества природных вод, их токсичности и биодоступности. При облучении солнечным светом вод болота и реки происходит трансформация растворенного органического вещества, а именно его разрушение до низкомолекулярных соединений вплоть до минерализации, и одновременная коагуляция соединений >0,22 мкм. В результате изменения степени окисления Fe и его связей с органическим веществом происходит формирование гидроксидов Fe(III). Возникающие гидроксиды могут образовывать крупные, стабилизированные органическими лигандами органоминеральные соединения >0,22 мкм, с которыми могут соосаждаться Mn, Co, Сd.
Ключевые слова
Об авторах
А. А. АлешинаРоссия
Алиса Романовна Алешина
Москва
О. Ю. Дроздова
Россия
Ольга Юрьевна Дроздова
Москва
С. А. Лапицкий
Россия
Сергей Анатольевич Лапицкий
Москва
Список литературы
1. Алекин О.А. Основы гидрохимии. Л.: Гидрометеорологическое изд-во, 1970. 446 с.
2. Асеев А.А., Веденская Н.Э. Развитие рельефа Мещерской низменности. М.: Изд-во АН СССР, 1962. 128 с.
3. Варшал Г.М., Кощеева И.Я., Сироткина И.С. и др. Изучение органических веществ поверхностных вод и их взаимодействия с ионами металлов // Геохимия. 1979. № 4. C. 598–607.
4. Гидрогеология СССР. Т. 1. Московская и смежные области. М.: Недра, 1966. 423 с.
5. ГОСТ 31861-2012. Вода. Общие требования к отбору проб. М., 2012. 32 с.
6. ГОСТ 31957-2012. Методы определения щелочности и массовой концентрации карбонатов и гидрокарбонатов. М., 2012. 24 с.
7. Давыдова О.А., Коровина Е.В., Ваганова Е.С. и др. Физико-химические аспекты миграционных процессов тяжелых металлов в природных водных системах // Вестн. ЮУрГУ. Химия. 2016. Т. 8, № 2. С. 40−50.
8. Дину М.И. Взаимодействие ионов металлов в водах с гумусовыми веществами глееподзолистых почв // Геохимия. 2015. № 3. С. 276−288.
9. Дроздова О.Ю., Анохина Н.А., Демин В.В., Лапицкий С.А. Экспериментальное исследование процесса фотодеструкции органических соединений природных вод // Вестн. Моск. ун-та. Сер. 4. Геология. 2018. № 4. С. 75–79.
10. Колубаева Ю.В. Формы миграции химических элементов в водах северной части Колывань-Томской складчатой зоны // Изв. Томск. политех. ун-та. 2013. Т. 322, № 1. С. 136−141.
11. Орлов Д.С. Свойства и функции гуминовых веществ // Гуминовые вещества в биосфере. М.: Наука, 1993. C. 16–27.
12. Allard B., Boren H., Petterson C., Zhang G. Degradation of humic substances by UV-irradiation // Environ. Intern. 1994. Vol. 20. P. 97–101.
13. Backlund P. Degradation of aquatic humic material by ultraviolet light // Chemosphere. 1992. Vol. 25. P. 1869–1878.
14. Corin N., Backlund P., Kulovaara M. Degradation products formed during UV-irradiation of humic waters // Chemosphere. 1996. Vol. 33, N 2. P. 245–255.
15. Cory R.M., Ward C.P., Crump B.C., Kling G.W. Sunlight controls water column processing of carbon in arctic fresh waters // Science. 2014. Vol. 345. P. 925–928.
16. Drozdova O.Yu., Aleshina A.R., Tikhonov V.V. et al. Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation // Chemosphere. 2020. Vol. 250. P. 1–10.
17. Drozdova O.Yu., Ilina S.M., Lapitskiy S.A. Transformation of dissolved organic matter in the continuum soil water — bog — stream and terminal lake of a boreal watershed (Northern Karelia) // Dissolved Organic Matter (DOM): Properties, Applications and Behavior. N.Y.: Nova Science Publishers Inc., 2017. P. 115–133.
18. Feng X., Hills K.M., Simpson A.J. et al. The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter // Organic Geochem. 2011. Vol. 42, N 3. P. 262–274.
19. Garg S., Ito H., Rose A.L., Waite T.D. Mechanism and kinetics of dark iron redox transformations in acidic natural organic matter solutions // Environ. Sci. Technol. 2013a. Vol. 47, N 4. P. 1861–1869.
20. Garg S., Jiang C., Miller C.J. et al. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights // Environ. Sci. Technol. 2013b. Vol. 47, N 16. P. 9190–9197.
21. Gustafsson J.P. Visual MINTEQ Ver, 3.1. URL: http:// vminteq.lwr.kth.se. 2013 (дата обращения: 13.10.2021).
22. Ilina S.M., Drozdova O.Yu., Lapitskiy S.A. et al. Size fractionation and optical properties of dissolved organic matter in the continuum soil solution — mire — river and terminal lake of a boreal watershed // Organic Geochem. 2014. Vol. 66. P. 14–24.
23. Ilina S.M., Lapitskiy S.A., Alekhin Y.V. et al. Speciation, size fractionation and transport of trace elements in the continuum soil water — mire — humic lake — river — large oligotrophic lake of a subarctic watershed // Aquat. Geochem. 2016. Vol. 22, N 1. P. 65–95.
24. Kitidis V. CDOM Dynamics and photoammonification in the marine environment. Ph.D. Thesis, University of Newcastle, 2002. 182 p.
25. Oleinikova O.V., Drozdova O.Yu., Lapitskiy S.A. et al. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters // Geochim. et Cosmochim. Acta. 2017. Vol. 211. P. 97–114.
26. Porcal P., Dillon P.J., Molot L.A. Interaction of extrinsic chemical factors affecting photodegradation of dissolved organic matter in aquatic ecosystems // Photochem. Photobiol. Sci. 2014. Vol. 13, N 5. P. 799–812.
27. Reuter J.H, Perdue E.M. Importance of heavy metal-organic matter interactions in natural waters // Geochim. et Cosmochim. Acta. 1977. Vol. 41, N 2. P. 325–334.
28. Rijkenberg M.J.A., Fischer A.C., Kroon K.J. et al. The influence of UV-irradiation on the photoreduction of iron in the Southern Ocean // Marin. Chem. 2005. Vol. 93. P. 119–129.
29. Sheng G.-P., Zhang M.-L., Yu H.-Q. A rapid quantitative method for humic substances determination in natural waters // Anal. Chim. Acta. 2007. Vol. 592, N 2. P. 162–167.
30. Stumm W. Chemistry of the solid-water interface. N.Y.: John Wiley & Sons, 1992. 448 p.
31. Vähätalo A.V., Wetzel R.G. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures // Marin. Chem. 2004. Vol. 89, N 1–4. P. 313–326.
32. Ward C.P., Cory R.M. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils // Environ. Sci. Technol. 2016. Vol. 50, N 7. P. 3545–3553.
33. Zhu M., Frandsen C., Wallace A.F. et al. Precipitation pathways for ferrihydrite formation in acidic solutions // Geochem. et Cosmochim. Acta. 2016. Vol. 172. P. 247–264.
Рецензия
Для цитирования:
Алешина А.А., Дроздова О.Ю., Лапицкий С.А. Изменение форм нахождения металлов при фотохимическом окислении органоминеральных соединений в болотных и речных водах. ВЕСТНИК МОСКОВСКОГО УНИВЕРСИТЕТА. СЕРИЯ 4. ГЕОЛОГИЯ. 2022;(4):157-163. https://doi.org/10.33623/0579-9406-2022-4-157-163
For citation:
Aleshina A.R., Drozdova O.Yu., Lapitskiy S.A. Change in the forms of metals during photochemical oxidation of organo-mineral compounds in swamp and river waters. Moscow University Bulletin. Series 4. Geology. 2022;(4):157-163. (In Russ.) https://doi.org/10.33623/0579-9406-2022-4-157-163