Cretaceous volcanism and intrusive magmatism features in the Mendeleev Rise region (Arctic Ocean) according to seismic data
https://doi.org/10.33623/0579-9406-2022-4-3-20
Abstract
The current paper is based primarily on the interpretation of 2D seismic lines for the Amerasian Basin. A synrift complex has been identified in half-grabens almost everywhere within the Alpha-Mendeleev Rise and conjugate basins according to the results of seismic data interpretation. Various magmatism features within the synrift complex have been identified on seismic profiles: plateau basalts; sills and dikes; reflections similar to SDRs (Seaward Dipping Reflectors Sequences) and volcanoes. Regional extension and synchronous widespread magmatism are probably associated with the formation of the High Artic Large Igneous Province (HALIP) in the Aptian-Albian. Considering the data on the isotope ages of igneous rocks for the Mendeleev Rise, it is assumed that the top of the synrift complex has an approximate age of 100 Ma and the bottom has an approximate age of 125 Ma. The Alpha-Mendeleev Rise was formed simultaneously with conjugate basins in the Aptian-Albian. An axial line can be drawn along the Alpha-Mendeleev Rise. To the west of the axial line, reflections similar to SDRs dip towards the Podvodnikov basin. To the east of the axial line, reflections dip towards the Toll, Mendeleev, Nautilus and Stefansson basins. The reflections converge in the central parts of the basins. The Alpha Mendeleev Rise is a double-sided volcanic passive continental margin. The Podvodnikov, Toll, Mendeleev, Nautilus, and Stefansson basins are rift basins with thinned continental crust at the base. Their development was interrupted before the start of spreading and the oceanic crust formation.
About the Authors
E. A. RodinaRussian Federation
Elizaveta A. Rodina
Moscow
A. M. Nikishin
Russian Federation
Anatoly M. Nikishin
Moscow
K. F. Startseva
Russian Federation
Ksenia F. Startseva
Moscow
H. W. Posamentier
United States
Henry W. Posamentier
25 Topside Row Drive, the Woodlands, TX 77380
References
1. Гусев Е.А., Лукашенко Р.В., Попко А.О. и др. Новые данные о строении склонов подводных гор поднятия Менделеева (Северный Ледовитый океан) // Докл. РАН. 2014. Т. 455, № 2. С. 184–188.
2. Драчев С.С. Тектоника и мезокайнозойская геодинамика района Новосибирских островов: Автореф. канд. дисс. М., 1989.
3. Дараган-Сущова Л.А., Зинченко В.Н., Дараган-Сущов Ю.И., Савельев И.Н. О времени главного погружения до океанических глубин и масштабах разновозрастного рифтогенеза в Арктическом бассейне по результатам интерпретации сейсмических данных // Региональная геология. 2019. № 80. С. 1–16.
4. Дараган-Сущова Л.А., Соболев Н.Н., Петров Е.О и др. К обоснованию стратиграфической привязки опорных сейсмических горизонтов на Восточно-Арктическом шельфе и в области Центрально-Арктических поднятий // Региональная геология. 2014. № 58. С. 5–21
5. Косько М.К., Соболев Н.Н., Кораго Е.А и др. Геология Новосибирских островов — основа интерпретации геофизических данных по Восточно-Арктическому шельфу России // Нефтегазовая геология. Теория и практика. 2013. Т. 8, № 2. С. 1–36.
6. Морозов А.Ф., Петров О.В., Шокальский С.П. и др. Новые геологические данные, обосновывающие континентальную природу области Центрально-Арктических поднятий // Региональная геология и металлогения. 2013. № 53. С. 34–55.
7. Никишин А.М., Петров Е.И., Малышев Н.А., Ершова В.П. Рифтовые системы шельфа Российской Восточной Арктики и арктического глубоководного бассейна: связь геологической истории и геодинамики // Геодинамика и геофизика. 2017. № 8 (1). С. 11–43.
8. Поселов В.А., Верба В.В., Жолондз С.М., Буценко В.В. Поднятия Амеразийского бассейна в Северном Ледовитом океане и возможные аналоги в Атлантическом океане // Океанология. 2019. Т. 59, № 5. С. 810–825. https://doi.org/10.31857/S0030-1574595810-825
9. Сколотнев С.Г., Федонкин М.А., Корнийчук А.В. Новые данные о геологическом строении юго-западной части поднятия Менделеева (Северный Ледовитый океан) // Докл. РАН. 2017. Т. 476, № 2. С. 190–196.
10. Сколотнев С.Г., Фрейман С.И., Хисамутдинова А.И. и др. Осадочные породы фундамента поднятия АльфаМенделеева в Северном Ледовитом океане // Литология и полезные ископаемые. 2022. № 2. С. 136–160. https://doi.org/10.31857/S0024497X22020082
11. Abdelmalak M.M., Meyer R., Planke S. et al. Pre-breakup magmatism on the Vøring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E // Tectonophysics. 2016. Vol. 675. P. 258–274. https:// doi.org/10.1016/j.tecto.2016.02.037.
12. Abdelmalak M.M., Planke S., Polteau S. et al. Breakup volcanism and plate tectonics in the NW Atlantic // Tectonophysics. 2019. Vol. 760. P. 267–296. https://doi.org/10.1016/j.tecto.2018.08.002
13. Brumley K. Geologic history of the Chukchi Borderland, Arctic Ocean // Stanford University, 2014.
14. Calves G., Schwab A.M., Huuse M. et al. Seismic volcanostratigraphy of the western Indian rifted margin: The pre‐ Deccan igneous province // J. Geophys. Res. 2011. Vol. 116. P. 1–28. DOI: 10.1029/2010JB000862
15. Chernykh A., Glebovsky V., Zykov M., Korneva M. New insights into tectonics and evolution of the Amerasia Basin // J. Geodyn. 2018. Vol. 119. P. 167–182. https://doi.org/10.1016/j.jog.2018.02.010
16. Conti B., Perinotto J.A. de J., Veroslavsky G. et al. Speculative petroleum systems of the southern Pelotas Basin, offshore Uruguay // Marin. and Petrol. Geol. 2017. Vol. 83. P. 1–25. https://doi.org/10.1016/j.marpetgeo.2017.02.022.
17. Dove D., Coakley B., Hopper J. et al. Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics // Geophys. 2010. N 183. P. 481–502.
18. Drachev S., Saunders A. The Early Cretaceous Arctic LIP: its geodynamic setting and implications for Canada Basin opening // Proceed. Fourth Internat. Confer. on Arctic Margins ICAM IV. US Department of the Interior, 2006. Р. 216–223.
19. Eldholm O., Thiede J., Taylor A. Evolution of the Norwegian Continental margin — background and objectives // Proc. Ocean Drill. Program Sci. Results. 1987. Vol. 104. Р. 5–25. https://doi.org/10.2973/odp.proc.ir.104.1987.
20. Elliott G.M., Parson L.M. Influence of margin segmentation upon the break-up of the Hatton Bank rifted margin, NE Atlantic // Tectonophysics. 2008. Vol. 457, Iss. 3–4. P. 161–176. https://doi.org/10.1016/j.tecto.2008.06.008.
21. Estrada S., Damaske D., Henjes-Kunst F. et al. Multistage Cretaceous magmatism in the northern coastal region of Ellesmere Island and its relation to the formation of Alpha Ridge — evidence from aeromagnetic, geochemical and geochronological data // Norweg. J. Geol. 2016. Vol. 96. P. 1–31. http://dx.doi.org/10.17850/njg96-2-03.
22. Evangelatos J., Funck T., Mosher D.C. The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge // Tectonophysics. 2017. Vol. 696–697. P. 99–114. https://doi.org/10.1016/j.tecto.2016.12.026
23. Evangelatos J., Mosher D.C. Seismic stratigraphy, structure and morphology of Makarov Basin and surrounding regions: tectonic implications // Marine Geol. 2016. Vol. 374. P. 1–13. https://doi.org/10.1016/j.margeo.2016.01.013.
24. Gaina C., Werner S.C., Saltus S. et al. Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic // Arctic Petrol. Geol. Soc. Memoir. 2011. Vol. 35. P. 39–48.
25. Geoffroy L. Volcanic passive margins // Comptes Rendus Geosci. 2005. N 337, Iss. 16. P. 1395–1408. https://doi.org/10.1016/j.crte.2005.10.006.
26. Geoffroy L., Burov E.B., Werner P. Volcanic passive margins: another way to break up continent s// Sci. Rep. 2015. Vol. 5. P. 1–12. https://doi.org/10.1038/srep14828
27. Geoffroy L., Guan H., Gernigon L. et al. The extent of continental material in oceans: C-Blocks and the Laxmi Basin example // Geophys. J. Intern. 2020. Vol. 222. P. 1471–1479. DOI: 10.1093/gji/ggaa215.
28. Harkina C., Kusznira N., Robertsb A. et al. Origin, composition and relative timing of seaward dipping reflectors on the Pelotas rifted margin // Marin. Petrol. Geol. 2020. Vol. 114. 104235. https://doi.org/10.1016/j.marpetgeo.2020.104235.
29. Hinz K. A hypothesis on terrestrial catastrophes; wedges of very thick oceanward dipping layers beneath passive continental margins// Geologisches Jahrbuch Reihe Geophysic. 1981. Bd. 22. S. 3–28.
30. Ilhan I., Coakley B.J. Meso–Cenozoic evolution of the southwestern Chukchi Borderland, Arctic Ocean // Marin. Petrol. Geol. 2018. Bd 95. P. 100–109. https://doi.org/10.1016/j.marpetgeo.2018.04.014
31. Jackson H.R., Chian D. The Alpha-Mendeleev ridge a large igneous province with continental affinities // GFF. 2019. https://doi.org/10.1080/11035897.2019.1655789
32. Jakobsson M., Grantz A., Kristoffersen Y., Macnab R. Physiographic provinces of the Arctic Ocean seafloor // Geol. Soc. Amer. Bull. 2003. N 115. P. 1443–1455.
33. Jokat W. Scientific Deep drilling in the Arctic Ocean: Status of the Seismic site survey data base // Polarforschung. 2012. Vol. 82 (1) P. 73–81.
34. Kashubin S.N., Petrov O.V., Artemieva I.M. et al. Crustal structure of the Mendeleev Rise and the Chukchi Plateau (Arctic Ocean) along the Russian wide-angle and multichannel seismic reflection experiment “Arctic-2012” // J. Geodyn. 2018. Vol. 119. P. 107–122. https://doi.org/10.1016/j.jog.2018.03.006.
35. Koopmann H., Franke D., Schreckenberger B. et al. Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data // Marin. Petrol. Geol. 2014. Vol. 50. P. 22–39. https://doi.org/10.1016/j.marpetgeo.2013.10.016.
36. Larsen L., Pederen A., Tegner C. et al. Age of Tertiary volcanic rocks on the West Greenland continental margin: Volcanic evolution and event correlation to other parts of the North Atlantic Igneous Province // Geol. Mag. 2016. Vol. 153 (3). P. 487–511. DOI: 10.1017/S0016756815000515
37. Lebedeva‐Ivanova N., Gaina C., Minakov A., Kashubin S. ArcCRUST: Arctic crustal thickness from 3D gravity inversion // Geochem., Geophysic., Geosystems. 2019. Vol. 20. P. 3225–3247. https://doi.org/10.1029/2018GC008098.
38. McDermott C., Lonergan L., Collier J.S. et al. Characterization of seaward-dipping reflectors along the South American Atlantic margin and implications for continental breakup // Tectonics. 2018. Vol. 37. P. 3303–3327. https://doi.org/10.1029/2017TC004923
39. Meyer R., Hertogen J., Pedersen R.B. et al. Interaction of mantle derived melts with crust during the emplacement of the Vøring Plateau, N.E. Atlantic // Marin. Geol. 2009. Vol. 261, Iss. 1–4. P. 3–16. ISSN 0025-3227. https://doi.org/10.1016/j.margeo.2009.02.007.
40. Mukasa S.B., Andronikov A., Brumley K. et al. Basalts from the Chukchi Borderland: 40Ar/39Ar ages and geochemistry of submarine intraplate lavas dredged from the western Arctic Ocean // J. Geophys. Res.: Solid Earth. Amer. Geophys. Union (AGU). 2020. Vol. 125 (7). DOI: 10.1029/2019JB017604
41. Nemcok M., Rybar S. Rift-drift transition in a magma-rich system: the Gop Rift-Laxmi Basin case study, West India // Geol. Soc. Lond. Spec. Publ. 2016. Vol. 455. http://dx.doi.org/10.1144/SP445.5
42. Nikishin A.M., Petrov E.I., Cloetingh S. et al. Arctic Ocean Mega Project: Pap. 1 — Data collection. Earth. Sci. Rev. 2021a. Vol. 217. 103559. https://doi.org/10.1016/j.earscirev.2021.103559.
43. Nikishin A.M., Petrov E.I., Cloetingh S. et al. Arctic Ocean Mega Project: Pap. 2 — Arctic stratigraphy and regional tectonic structure // Earth Sci. Rev. 2021b. 217. 103581. https://doi.org/10.1016/j.earscirev.2021.103581
44. Nikishin A.M., Petrov E.I., Cloetingh S. et al. Arctic Ocean Mega Project: Pap. 3 — Mesozoic to Cenozoic geological evolution // Earth. Sci. Rev. 2021c. 217. 103034. https://doi.org/10.1016/j.earscirev.2019.103034
45. Oakey G.N., Saltus R.W. Geophysical analysis of the Alpha–Mendeleev ridge complex: Characterization of the High Arctic Large Igneous Province // Tectonophysics. 2016. Vol. 691. P. 65–84. https://doi.org/10.1016/j.tecto.2016.08.005
46. Paton D.A., Pindell J., McDermott K. et al. Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: Insights from the South Atlantic // Geology. 2017. Vol. 45(5). P. 439–442. https://doi.org/10.1130/g38706.1
47. Petrov O., Morozov A., Shokalsky S. et al. Crustal structure and tectonic model of the Arcticregion // Earth Sci. Rev. 2016. N 154. P. 29–71.
48. Piskarev A., Poselov V., Kaminsky V. Geologic Structures of the Arctic Basin // Springer Intern. Publ. Cham. 2019. https://doi.org/10.1007/978-3-319-77742-9
49. Planke S., Eldholm O. Seismic response and construction of seaward dipping wedges of flood basalts: Voring volcanic margin // J. Geophys. 1994. Vol. 99. P. 9263–9278. https://doi.org/10.1029/94JB00468.
50. Planke S., Symonds P.A., Alvestad E., Skogseid J. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins // J. Geophys. Res. 2000. Vol. 105 (B8). P. 19335–19351. https://doi.org/10.1029/1999JB900005
51. Poselov V.A., Butsenko V.V. et al. Seismic Stratigraphy of Sedimentary Cover in the Podvodnikov Basin and North Chukchi Trough // Dokl. Earth Sci. 2017. Vol. 474 (2). P. 688– 691. https://doi.org/10.1134/S1028334X17060137
52. Saltus R.W., Miller E.L., Gaina C., Brown P.J. Chapter 4 Regional magnetic domains of the Circum-Arctic: a framework for geodynamic interpretation // Geol. Soc. Lond. 2011. Vol. 35 (1). P. 49–60. https://doi.org/10.1144/M35.4
53. Sapin F., Ringenbach J.C., Clerc C. Rifted margins classification and forcing parameters // Sci. Rep. 2021. Vol. 11. https://doi.org/10.1038/s41598-021-87648-3
54. Shimeld J.W., Boggild K., Mosher D.C., Jackson H.R. Reprocessed multi-channel seismic-reflection data set from the Arctic Ocean, collected using icebreakers between 2007–2011 and 2014–2016 for the Canadian Extended Continental Shelf program // Geol. Surv. of Canada. 2021. Open File 8850, 2021. https://doi.org/10.4095/329248
55. Shimeld J.W., Chia D., Jackson H.R. et al. Evidence for an important tectonostratigraphic seismic marker across Canada Basin and southern Alpha Ridge of the Arctic Ocean // Geol. Surv. of Canada. 2011. Open File 6822. DOI: 10.4095/289234
56. Skaarup N., Jackson H.R., Oakey G. Margin segmentation of Baffin Bay/Davis Strait, eastern Canada based on seismic reflection and potential field data // Marin. Petrol. Geol. 2006. Vol. 23 (1). P. 127–144. https://doi.org/10.1016/j.marpetgeo.2005.06.002
57. Skolotnev S., Aleksandrova G. et al. Fossils from seabed bedrocks: Implications for the nature of the acoustic basement of the Mendeleev Rise (Arctic Ocean) // Marin. Geol. 2019. Vol. 407. P. 148–163. https://doi.org/10.1016/j.margeo.2018.11.002.
58. Skolotnev S.G., Fedonkin M.A., Korniychuk A.V. New data on the geological structure of the southwestern Mendeleev Rise, Arctic Ocean // Dokl. Earth Sci. 2017. Vol. 476. P. 1001–1006. https://doi.org/10.1134/S1028334X17090173
59. Vail P.R., Mitchum R.M. Seismic stratigraphy and global changes of sea level, 1, Overview// Mem. Amer. Assoc. Petrol. Geol. 1977. Vol. 22. P. 51–52.
60. Van Wagoner N.A., Williamson M.-C., Robinson P.T., Gibson I.L. First samples of acoustic basement recovered from the Alpha Ridge, Arctic Ocean: new constraints for the origin of the ridge // J. Geodyn. 1986. Vol. 6. P. 177–196.
61. Watkinson M.P., Hart M.B., Joschi A. Cretaceous tectonostratigraphy and the development of the cauvery Basin southeast India // Petrol. Geosci. 1977. Vol. 13. P. 181–191.
62. Weber J.K. The Structures of the Iceland-Faeroe Ridge, Implications for the Alpha Ridge, Arctic Ocean and North Atlantic: Comparisons and Evolution of the Canada Basin // Marin. Geol. 1990. Vol. 93. P. 43–68.
63. Weigelt E., Jokat W., Franke D. Seismostratigraphy of the Siberian Sector of the Arctic Ocean and adjacent Laptev Sea Shelf // J. Geophys. Res. Solid Earth. 2014. Vol. 119. P. 5275– 5289, doi:10.1002/2013JB010727.
64. Williamson M.-C., Kellett D., Miggins D. et al. Age and Eruptive Style of Volcanic Rocks Dredged from the Alpha Ridge, Arctic Ocean // Geophys. Res. Abstr. EGU General Assembly. 2019. Vol. 21. EGU2019-6336.
65. White R.S., Smith L.K. Crustal structure of the Hatton and the conjugate East Greenland rifted volcanic continental margins, NE Atlantic // J. Geophys. 2009. Vol. 114 (B2). https://doi.org/10.1029/2008JB005856
Review
For citations:
Rodina E.A., Nikishin A.M., Startseva K.F., Posamentier H.W. Cretaceous volcanism and intrusive magmatism features in the Mendeleev Rise region (Arctic Ocean) according to seismic data. Moscow University Bulletin. Series 4. Geology. 2022;(4):3-20. (In Russ.) https://doi.org/10.33623/0579-9406-2022-4-3-20