Preview

Moscow University Bulletin. Series 4. Geology

Advanced search

Granulite-gneiss (high grade) belts: geodynamic view

https://doi.org/10.33623/0579-9406-2018-4-13-22

Abstract

On the basis of analysis and generalization of modern data the features of the structure and tectonic evolution of granulite-gneiss (high-grade) belts of the Earth are considered. Their continental collisional tectonic nature, polycyclic and inherited character of development, expressed in repeated manifestations in the same belt of several stages of granulite metamorphism, separated by intervals of several hundred million years, are confirmed. Granulite-gneiss belts are permanent mobility structures that maintain endogenous activity in all stages of their existence, including intraplate environments. The relationship between high-grade belts and supercontinental cyclicity is revealed, which is expressed in the spatial coincidence of the majority of them to the outskirts of the young oceans that arose during the breakup of Pangea; in the control of assembly and breakup of ancient supercontinents along granulite belts; in correlation of manifestations of different types of granulite metamorphism in these belts with the stages of the supercontinent cycle. In the evolution of these belts there is a complex interaction of plate-tectonic and mantle-plume
mechanisms, which is expressed in the combination of continental collision and underplating processes. The possibility of using granulite-gneiss belts in paleotectonic analysis along with other indicators of geodynamic settings is shown.

About the Author

N. A. Bozhko
Московский государственный университет имени М.В. Ломоносова
Russian Federation


References

1. Божко Н.А. Реликты докембрийских океанических бассейнов в составе гранулитовых поясов Земли и геодинамические следствия // Тектоника современных и древних океанов и их окраин: Мат-лы XLIX Тектонического совещания. Т. 1. М.: ГЕОС, 2017. С. 64–67.

2. Божко Н.А. Высокобарические гранулито-гнейсовые пояса как важные объекты палеотектонического анализа // Гранулитовые и эклогитовые комплексы в истории Земли: Мат-лы науч. конф. и путеводитель науч. экскурсий. Петрозаводск: КНЦ РАН, 2011. С. 31–34.

3. Глебовицкий В.А., Котов А.Б, Сальникова Е.Б. и др. Гранулитовые комплексы Джугджуро-Становой складчатой области и Пристанового пояса: возраст, условия и геодинамические обстановки проявления метаморфизма // Геотектоника. 2009. № 4. С. 3–15.

4. Слабунов А.И. Геология и геодинамика архейских подвижных поясов на примере Беломорской провинции Фенноскандинавского щита. Петрозаводск: КНЦ РАН, 2008. 294 с.

5. Щербак Н.П., Артеменко Г.В.. Бартницкий Е.Н. Возраст железорудных формаций Украинского щита // Изотопное датирование эндогенных рудных формаций. М.: Наука, 1993. С. 14–26.

6. Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита. Архей. Киев: Наукова думка, 2005. 243 с.

7. Aftalion M., Bibikova E.V., Bowes D.R. et al. Timing of Early Proterozoic collisional and extensional events in the granulite-gneiss-charnockite-granite complex, Lake Baikal, USSR: A U-Pb, Rb-Sr, and Sm-Nd isotopic study // J. Geology. 1991. Vol. 99. P. 851–862.

8. Balagansky V.V., Gorbunov L.A., Mudruk S.V. Paleoproterozoic Lapland-Kola collisional orogen, Northen Fennoscandian. Baltic shield // Precambrian high-grade mobile belts: Extend. abstr. Petrozavodsk: KRC RAS, 2014. P. 7–10.

9. Bhattacharya S., Kar R., Misra S., Teixeira W. Early Archaean continental crust in the Eastern Ghats granulite belt, India: isotopic evidence from a charnockite suite // Geol. Mag. 2001. Vol. 138, N 5. P. 609–618.

10. Bisnath A., Frimmel H.E. Metamorphic evolution of the Maud Belt: P-T-t path for high-grade gneisses in Gjelsvikfjella, Dronning Maud Land, East Antarctica // J. Afric. Earth Sci. 2005. Vol. 43. P.505–524.

11. Boniface N., Schenk V., Appel P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry // Precambr. Res. 2012. Vol. 192–195. P. 16–33.

12. Bozhko N.A. Granulite-Gneiss belts: geodynamic implications. In: Precambrian high-grade mobile belts: Extend. abstr. Petrozavodsk: KRC RAS, 2014. P. 16–17.

13. Cutten H.N.C., De Waele B., Johnson S.P. The Mozambique Belt, eastern Africa: tectonic history in a regional setting. Abstr. Academia Nacional De Ciencias Gondwana 12. Mendoza, 2005. P. 117.

14. England P.C., Thompson A.B. Pressure temperature time paths of regional metamorphism. 1. Heat transfer during the evolution of regions of thickened continental crust // Petrology. 1984. Vol. 25. P. 894–928.

15. Faure M., Trap P., Lin W. et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs // Episodes. 2007. Vol. 30. P. 1–12.

16. Glebovitsky V.A. Granulites in the Proterozoic and Neoarchean mobile zones. Precambrian high-grade mobile belts: Extend. abstr. Petrozavodsk: KRC RAS, 2014. P. 25– 26.

17. Gower C.F., Krogh T.E. A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province // Canad. J. Earth Sci. 2002. Vol. 39. P. 795– 829.

18. Holzer L., Frei R., Baeton J.M. et al. Unraveling the record of successive high-grade events in the Central Zone of the Limpopo Belt using Pb single phase dating of metamorphic minerals // Precambr. Res.1998. Vol. 87. P. 87–115.

19. Johnson S.P., Cutten H.N.C., Muhongo S., De Waele B. Neoarchean magmatism and metamorphism of the western granulites in the central domain of the Mozambique belt, Tanzania: U-Pb SHRIMP geochronology and PT estimates // Tectonophysics. 2003. Vol. 375. P. 125–145.

20. Krauss J.B., Rivers T. High-pressure granulites in the Grenvillian Grand Lake thrust system, Labrador: Pressure-temperature conditions and tectonic evolution // GSA Mem. 2004. Vol. 197. P. 105–133.

21. Krogh T.E. Precise U-PB ages for Grenvillian and pre-Grenvillian thrusting of Proterozoic and Archean metamorphic assemblages in the Grenville Front tectonic zone, Canada // Tectonics. 1994. Vol. 13, N 4. P. 963–982.

22. Kusky T.M., Li J. Paleoproterozoic tectonic evolution of the North China Craton // J. Asian Earth Sci. 2003. Vol. 22, Iss. 4. P. 383–397.

23. Lu Jun-Sheng, Wang Guo-Dong, Wang Hao et al. Palaeoproterozoic metamorphic evolution and geochronology of the Wugang block, southeastern terminal of the Trans-North China Orogen // Precambr. Res. 2014. Vol. 251. P. 197–211.

24. Mukhopadhyay D., Basak K. The Eastern Ghats Belt — a polycyclic granulite terrain // J. Geol. Soc. India. 2009. Vol. 73. P. 489–518.

25. Nogueira J.R., Choudhuri A. Geotectonic models аnd geologic evolution оf the high-grade gneiss terranes of Juiz De Fora (Mg), Brazil // Revista Brasileira de Geociências. 2000. Vol. 30. P. 169–173.

26. Peucat J.-J., Barbosa J.S.F. et al. Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil): Nd isotopes and U-Pb zircon ages // J. South Amer. Earth Sci. 2011. Vol. 31. P. 397–413.

27. Reenen van D.D., Smit C.A., Roering C. Multi-cycle high-grade metamorphism and D-P-T-t Evolution of the Central Zone of the Limpopo Belt, Southern Africa. Precambrian high-grade mobile belts: Extend. abstr. Petrozavodsk: KRC RAS, 2014. P. 74–75.

28. Santos T.M.B., Munhá J.M., Tassinari C.C.G. et al. Metamorphic P-T evolution of granulites in the central Ribeira Fold Belt, SE Brazil // Geosci. J. 2011. Vol. 15, Iss. 1. P. 27–51.

29. Sommer H., Kroner A., Lowrv L. Neoproterozoic eclogite-to high-pressure granulite-facies metamorphism in the Mozambique belt of east-central Tanzania: A petrological, geochemical and geochronological approach // Lithos. 2017. Vol. 284–285. P. 666–690.

30. Toteu S.F., Schmus van W.R. Penaye J., Nyobé J.B. U–Pb and Sm–N edvidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of Southern Cameroon // Precambr. Res. 1994. Vol. 67, Iss. 3–4. P. 321–347.

31. Touret J.L.R., Santosh M., Huizenga J.M. High-Temperature Granulites and Supercontinents // Geosci. Front. 2016. Vol. 7, N 1. P. 101–113.

32. Turkina O. Paleoproterozoic granitoid magmatism of granite-greenstone and granulite-gneiss terranes of the south-western Siberian craton. Precambrian high-grade mobile belts: Extend. abstr. Petrozavodsk: KRC RAS, 2014. P. 112–113.

33. Volodichev O.I. Evolution of metamorphic processes in the Belomorian mobile belt. Precambrian high-grade mobile belts: Extend. abstr. Petrozavodsk: KRC RAS, 2014. P. 25–26.

34. Wade B.P., Kelsey D.E., Hand M., Barovich K.M. The Musgrave Province: Stitching north, west and south Australia // Precambr. Res. 2008. Vol. 166, Iss.1–4. P. 370–386.

35. Zhao G., Min Sun, Wilde S.A., Sanzhong Li et al. Composite nature of the North China Granulite-Facies Belt: Tectonothermal and geochronological constraints // Gondwana Res. 2006. Vol. 9, Iss. 3. P. 337–348.


Review

For citations:


Bozhko N.A. Granulite-gneiss (high grade) belts: geodynamic view. Moscow University Bulletin. Series 4. Geology. 2018;(4):13-22. (In Russ.) https://doi.org/10.33623/0579-9406-2018-4-13-22

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9406 (Print)