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Аннотация. Изучались геохимические характеристики и  нормализованные спектры редкоземельных 
элементов (РЗЭ) в 16 образцах вод, отобранных из рек и озер в умеренных и бореальных регионах России. По-
казано, что исследуемые воды характеризуются типичными для поверхностных вод спектрами РЗЭ, при этом 
содержания легких РЗЭ выше, чем тяжелых. Умеренные или высокие положительные корреляции наблюдались 
между концентрациями РЗЭ, растворенного органического углерода и железа в водах озер, что указывает на 
потенциальную роль органо-минеральных коллоидов в переносе РЗЭ. В некоторых изученных водоемах от-
мечены аномалии церия (из-за его окисления на поверхности оксигидроксидов Mn и Fe) и европия, что связано 
с вкладом подземных вод в питание изучаемых рек и озер.
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Abstract. Geochemical characteristics and normalized patterns of rare earth elements (REE) were studied in 16 water 
samples collected from rivers and lakes in temperate and boreal regions of Russia. It was shown that the studied waters 
exhibit a typical REE pattern, with light REE being more abundant than heavy REE. Moderate to high positive correla-
tions were observed between REE concentrations and dissolved organic carbon and iron in lake waters, indicating a 
potential role of organomineral colloids in REE transfer. In some of the studied reservoirs, anomalies of Ce due to its 
oxidation on the surface of Mn oxides and Fe oxyhydroxide colloids and Eu which is associated with the contribution 
of groundwater to the nutrition of the studied rivers and lakes were noted.
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Введение. Редкоземельные элементы (РЗЭ) от-
носятся к элементам, которые имеют важное значе-
ние в геохимических процессах, сопровождающих 
этапы эволюции коры и  мантии [Романова и  др., 
2024]. РЗЭ можно обнаружить в  поверхностных 
водах в  различных концентрациях в  зависимости 
от происхождения вод и  геологических особен-
ностей региона [Sholkovitz, 1995]. РЗЭ могут быть 
использованы в  качестве маркеров различных 
геохимических процессов, которые протекают при 
взаимодействии природных вод с водовмещающими 
породами [Харитонова, Вах, 2015]. В последнее время 
РЗЭ активно изучаются во всех типах природных 
вод [Вах и др., 2018], в том числе из-за того, что они 
могут являться индикаторами геоэкологического 

состояния природно-техногенных систем [Вах, 2014; 
Чудаев и др., 2015].

На распределение РЗЭ влияют условия водных 
экосистем, которые контролируют взаимодей-
ствие твердой фазы и раствора. К ним относятся 
такие факторы, как pH, уровень растворенного 
кислорода, соленость, содержание и  состав кол-
лоидов [Amorim, et al., 2019]. Считается, что ос-
новным источником поступления РЗЭ в воды озер 
и  морей является взвешенный и  растворенный 
речной сток [Страховенко, Овдина, 2021]. Умень-
шение концентраций РЗЭ при последовательной 
фильтрации природных вод указывает на то, что 
значительная часть РЗЭ переносится с  коллои-
дами, представленными оксигидроксидами Fe 
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и Mn и органическим веществом [Ilina, et al., 2016; 
Davranche, et al., 2017].

Недавние исследования показали, что количество 
РЗЭ, присутствующих в поверхностных водах, уве-
личивается из-за ускоренной индустриализации 
и  урбанизации многих регионов по всему миру 
[Song, et al., 2017; Balaram, 2019]. Высокие уровни РЗЭ 
в поверхностных водах могут оказывать негативное 
воздействие на водные экосистемы и здоровье чело-
века [Amorim, et al., 2019]. Поэтому крайне важно 
продолжить изучение распределения РЗЭ в поверх-
ностных водах с  целью оценки воздействия этих 
элементов на окружающую среду [Hissler, et al., 2014; 
Ilina, et al., 2016]. На данный момент поведение РЗЭ 
в поверхностных водах северо-запада Европейской 
части РФ изучено в незначительном объеме.

Основной целью данного исследования является 
определение содержания и изучение геохимических 
характеристик распределения РЗЭ в поверхностных 
водах бореальной и умеренной зон. Для измерения 
концентрации растворенных РЗЭ в выбранных об-
разцах воды использовалась масс-спектрометрия 
с индуктивно связанной плазмой (ИСП-МС).

Материалы и методы исследования. Для пони-
мания фонового уровня РЗЭ в поверхностных водах 
в нормальных условиях было отобрано 16 образцов 
из рек (9 проб) и озер (7 проб) вдали от крупных 
промышленных и сельскохозяйственных объектов 
(рис.  1). Точки отбора проб располагались в  Во-
логодской области (реки Синичка, Кой, Илекса, 
Ковжа, озера Кубенское, Заиловское, Панковское) 
и Республике Карелия (реки Лемб, Лундожма, Ухта, 
Черпайоки, Оланга, озера Навозеро, Онежское, 
Коммунаров, Ципринга). Самая южная точка отбора 
проб — река Синичка (58°51,6ʹ с. ш., 40°11,7ʹ в. д.), 
самая северная  — озеро Ципринга (66°18,4ʹ  в. д., 
30°42,9ʹ).

Все пробы были отобраны из незагрязненных ес-
тественных водоемов различных размеров и типов. 
Большинство водоемов расположены удаленно друг 
от друга и не связаны гидрологически. Однако озеро 
Навозеро расположено в непосредственной близо-
сти от реки Лундожма, которая впадает в Онежское 
озеро. Река Кой также впадает в Кубенское озеро. 
Пробы были отобраны как из малых, так и из круп-
ных водотоков, в том числе тех, которые ранее не 
были изучены. Крупнейшие места отбора проб: 
Кубенское озеро, река Ковжа, Онежское озеро, озеро 
Ципринга. Климат, рельеф, почва и растительность 
в  районе Северной Карелии (включающем реки: 
Ухта, Черпайоки, Оланга и озеро Ципринга) были 
описаны в некоторых предыдущих исследованиях 
[Ilina, et al., 2013; 2014]. Кубенское озеро располо-
жено в заболоченной низине в Вологодской области 
и имеет ледниково-тектоническое происхождение. 
Площадь зеркала воды озера варьируется от 370 до 
417  км2. Дно Кубенского озера преимущественно 
песчаное, питание смешанное (преимущественно 
снеговое), в озеро впадает около 30 рек. Река Ковжа 

также находится в Вологодской области и впадает 
в Белое озеро, относящееся к бассейну реки Волги. 
Ее длина составляет 86 километров, а площадь во-
досбора около 5000 км2. Онежское озеро является 
крупнейшим из опробованных объектов и является 
вторым по величине пресноводным водоемом в Ев-
ропе. Его площадь составляет 9690 км2. Котловина 
озера имеет тектоническое происхождение и  рас-
положена на стыке Балтийского щита и  Русской 
платформы. Пункты опробования Синичка, Кой, Ку-
бенское, Заиловское, Паньковское, Илекса и Ковжа 
расположены на территории, занятой фанерозойски-
ми отложениями (преимущественно аргиллитами, 
песчаниками и известняками). Пункты опробования 
Лемб, Навозеро, Лундожма, Онега, Коммунаров, 
Ухта, Черпайоки, Оланга, Ципринга расположены 
на территории Балтийского щита, сложенной магма-
тическими и метаморфическими породами кислого 
состава архея и протерозоя.

Отбор проб воды проводился в июле 2018 года. 
Значения pH и  удельной электропроводности из-
мерялись in situ с помощью pH-метра Hanna HI 9025 
и  кондуктометра Hanna HI 9033, соответственно. 
Сразу после отбора пробы вод пропускались че-
рез фильтры с  размером пор 0,22  мкм (Steritop, 
“Millipore”). Образцы вод собирались в  предвари-
тельно очищенные поливинилхлоридные банки 
и хранились в холодильнике до поступления в лабо-
раторию. Основные и микроэлементы (включая РЗЭ) 
растворов анализировались методом ИСП-МС (ин-
дуктивно-связанная плазма–масс-спектрометрия; 
7500, “Agilent Technologies”), относительная погреш-
ность измерений составила ±3 %. Точность анализов 
оценивалась с  использованием международного 

Рис. 1. Карта отбора проб
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стандарта речной воды SLRS-4, расхождение изме-
ренных и сертифицированных концентраций иссле-
дуемых элементов не превышало 20 %. Растворенный 
органический углерод (РОУ) определялся с  по-
мощью CN-анализатора для жидких проб (LiquiTOC 
trace, “Elementar”) с пределом обнаружения 1 мг/л 
и  воспроизводимостью 5 %. Неорганические ани-
оны измерялись методом ионной хроматографии 
(Dionex ICS-2000, “Thermo”). Количество РЗЭ, 
связанное с органическими веществами в исследу-
емых водоемах, рассчитывалось с использованием 
программы Visual MINTEQ версия  3.1. Входными 
данными являлись pH, концентрации основных 
катионов, анионов, РОУ, микроэлементов и  РЗЭ 
в пробах. В расчетах использовалась Стокгольмская 
гуминовая модель (SHM) для комплексообразования 
металлов с органическим веществом.

Результаты исследований и  их обсуждение. 
Воды озера Навозеро имели низкий pH (5,1). Воды 
из других проб варьировались от нейтрального до 
слабощелочного (6,1–8,7). Значение pH увеличи-
валось от малого озера к  реке и  большому озеру, 
при этом увеличиваясь от озера Навозеро (5,1) 
к реке Лундожма (7,1) и Онежскому озеру (7,2) со-
ответственно. Значение pH вод реки Кой ниже, чем 
в озере Кубенское, в которое она впадает (7,8 и 8,7 
соответственно). Значения окислительно-восста-
новительных потенциалов (Eh) вод были типичны 
для поверхностных вод, их значения варьировались 
от 160 мВ в озере Панковское до 352 мВ в наиболее 
окисленных водах Навозера. Значения удельной 
электропроводности значительно различались в раз-
ных пробах, составляя от 7 до 163 мкСм/см для озер 
и от 26 до 307 мкСм/см для рек.

По анионному составу большинство рек и озер 
гидрокарбонатные, по катионному  — кальциевые 
(рис. 2). Исключением являются воды озер Навозеро 

и Коммунаров, которые находятся на границе хло-
ридно-натриевого и хлоридно-кальциевого типов. 
Воды Онежского озера относятся к  смешанному, 
ближе к гидрокарбонатно-кальциевому типу. Воды 
рек Ковжа и Илекса — хлоридно-кальциевого типа.

Средняя концентрация РОУ в  пробах речных 
водах была на 2  мг/л выше, чем в  озерных водах 
(14 мг/л и 12 мг/л соответственно). В пробе из реки 
Кой уровень РОУ составил 19 мг/л, а в озере Кубен-
ском, куда впадает эта река, концентрация составила 
16 мг/л. Самая низкая концентрация РОУ наблюда-
лась в пробе воды озера Навозеро (4,5 мг/л). В реке 
Лундожма концентрация РОУ составила 26  мг/л, 
в Онежском озере — 7 мг/л.

В исследованных реках средняя концентрация 
растворенного железа была более чем в  два раза 
выше по сравнению с  образцами озерной воды 
(в среднем 474 мкг/л и 178 мкг/л, соответственно). 
Содержание железа в образцах речной воды варьи-
ровалось от 62 мкг/л (Илекса) до 1266 мкг/л (Черпай-
оки). В озерах концентрации железа варьировались 
от 13 мкг/л (Ципринга) до 501 мкг/л (Коммунаров).

Общее содержание РЗЭ в исследованных образ-
цах варьировалось от 0,02 до 4,4 мкг/л (рис. 3). Самые 
низкие концентрации были обнаружены в образцах 
из озер Навозеро и Заиловское (0,02 мкг/л) и реки 
Илекса (0,04 мкг/л). Самые высокие общие концент-
рации РЗЭ наблюдались в образцах из реки Синичка 
(4,4 мкг/л).

Средние концентрации РЗЭ в образцах в целом 
соответствуют обобщенной последовательности 
Ce > La > Nd > Pr > Sm > Gd > Dy > Yb > Er > Eu > Ho > 
Tb > Lu > Tm, которая согласуется с правилом Оддо-
Харкинса [Zhenggui, et al., 2001]. Соотношение между 
La и Yb может быть использовано для представления 
более тяжелых и более легких групп РЗЭ [Andersson, 
et al., 2006]. По полученным данным (рис. 4) видно, 

Рис. 2. Диаграмма Пайпера для исследуемых вод
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что концентрация более тяжелых РЗЭ была ниже, чем 
концентрация более легких РЗЭ. Отношение La/Yb 
варьировалось от 1 до 28 и в целом увеличивалось 
с юга на север в образцах вод, при этом самые высо-
кие значения наблюдались в образцах воды из озер 
Коммунаров и Онежского, а также реки Лундожма. 

Умеренная и высокая положительная корреляция 
(R2) между РЗЭ и Fe и DOC (0,71–0,91 и 0,33–0,79) 
наблюдалась в озерах, тогда как в реках такой кор-
реляции не было обнаружено (0,17–0,36 и 0,27–0,42).

Распределение РЗЭ в  природных материалах 
и  водах обычно можно представить с  помощью 
нормализованных спектров РЗЭ относительно 
сланцев [Gromet, et al., 1984]. Так, нормализация 
концентраций РЗЭ по данным Североамериканского 
сланцевого композита (NASC) позволяет распозна-

вать аномальную концентрацию для отдельного РЗЭ 
(как положительные или отрицательные аномалии) 
[Gromet, et al., 1984, Taylor, et al., 1985]. Некоторые 
аномалии могут возникать из-за окислительно-
восстановительного поведения Ce и  Eu, которые 
могут существовать в двух различных состояниях 
окисления (Ce3+/Ce4+ и Eu2+/Eu3+). На рис. 5 приве-
дены нормализованные на сланец (NASC) спектры 
РЗЭ в исследованных водах, где видно, что самые 
низкие спектры РЗЭ характерны для вод с самыми 
низкими концентрациями РОУ (3–11 мг/л). Расчеты 
моделирования с использованием программы Visual 
MINTEQ показали, что 97–100 % изученных РЗЭ 
были связаны с органическими лигандами в иссле-
дованных образцах воды. Эти данные согласуются 
с предыдущими исследованиями по формам нахож-

Рис. 3. Сумма концентраций РЗЭ в исследованных образцах вод (в мкг/л)

Рис. 4. Соотношение La/Yb в исследованных образцах вод
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дения РЗЭ в природных водах, которые подчеркнули 
значительную роль органического вещества в ком-
плексообразовании и мобилизации этих элементов 
в водной среде, особенно в пресноводных системах 
с низкой и умеренной соленостью [Pédrot, et al., 2015; 
Davranche, et al., 2017].

Для того чтобы исключить влияние правила 
Оддо–Харкинса, приводящего к  характерной зиг-
загообразной форме распространенности лантано-
идов на логарифмических графиках, рассчитывались 
значения δCe и  δEu (аномалии Ce и  Eu, соответ-
ственно) [Bolhar, Vankranendonk, 2007; Kulaksız, 
Bau, 2013; Wang, et al., 2019]. Значения δCe для всех 
вод, за исключением реки Черпайоки и  озера На-
возеро (для которых δCe = 1,1), показали слабые от-
рицательные аномалии Ce в диапазоне от 0,6 до 0,9 
(рис. 6). Процессы, которые преобразуют Ce3+ в Ce4+, 
включают биологически опосредованное окисление 
[Moffett, 1990, 1994] и  абиотическое окисление на 
поверхности оксидов марганца и коллоидов и частиц 
оксигидроксида железа [Sholkovitz, 1995; Pédrot, et 
al., 2015; Ilina, et al., 2016; Davranche, et al., 2017]. Для 
существования этого минимума требуются высокие 
концентрации растворенного железа и насыщенная 
кислородом среда, и эти условия были выполнены 
в  исследуемых образцах рек и  мелководных озер. 
Положительные аномалии Eu показаны на рис.  6. 
Значение δEu варьировалось от 0,98 до 26 для рек 
и от 0,88 до 3,05 для озер. Максимальная концент-

рация Eu в  исследованных реках и  озерах может 
быть связана с их питанием из грунтовых вод [Ilina, 
et al., 2016].

Для большинства более легких РЗЭ, таких как La, 
Ce, Nd и Eu, средние концентрации в исследованных 
реках выше по сравнению с данными по содержани-
ям их в реках мира [Savenko, et al., 2024]. Особенно 
эта тенденция заметна для La и Ce. В то же время 
средние концентрация Pr и Sm оказалась в несколь-
ко раз ниже среднемировых значений (рис. 7). Для 
более тяжелых редкоземельных элементов (РЗЭ), 
начиная с Gd, наблюдается иная картина: средняя 
концентрация этих элементов в  исследованных 
реках либо совпадают, либо ниже по сравнению 
с данными по рекам мира. 

Полученные результаты указывают на отличи-
тельные особенности распределения РЗЭ в речных 
водах бореальных и умеренных зон по сравнению 
с  мировыми тенденциями. Преобладание более 
легких РЗЭ может быть связано с геохимическими 
процессами и  источниками поступления РЗЭ, ха-
рактерными для данного региона.

Заключение. Было показано, что изученные воды 
рек и озер из бореальной и умеренной зон характе-
ризуются различным содержанием редкоземельных 

Рис. 5. Нормализованные на сланец (NASC) спектры РЗЭ в ис-
следованных водах

Рис. 6. Диаграмма δCe-δEu редкоземельных элементов для ис-
следованных образцов воды (река Илекса отмечена оранжевым 
цветом)

Рис. 7. Сравнение концентраций РЗЭ в исследованных реках и реках мира по [Savenko, Savenko, 2024]
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элементов, которое в первую очередь контролирует-
ся не геологической основой, а гидрохимическими 
свойствами изучаемых водных систем. 

Наблюдалась умеренная или высокая поло-
жительная корреляция между содержанием РЗЭ 
и  Fe и  органическим углеродом в  растворенной 
(< 0,22 мкм) фракции вод озер. В образцах из круп-
ных рек и некоторых озер были отмечены аномалии 
Ce из-за его окисления на поверхности коллоидов 
оксидов Mn и  оксигидроксида Fe. Наблюдаемые 

аномалии Eu связаны со значительным вкладом под-
земных вод в питание изучаемых рек и озер.

Для полного понимания поведения РЗЭ в пресно-
водных экосистемах с целью оценки долгосрочного 
воздействия на биоту, окружающую среду и здоро-
вье человека необходимы дальнейшие исследования.

Финансирование. Исследование проводилось 
в  рамках государственного задания Московского 
государственного университета имени М.В. Ломо-
носова.
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