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Математика — это язык, на котором написана 
книга природы.             (Г. Галилей)

Посвящается 270-летию МГУ имени М.В. Ломоносова

Введение. Несмотря на обязательное подчинение 
мотива распределения атомов в  кристаллической 
структуре одной из 230 групп симметрии, распре-
деление конкретных структурных представителей 
по этим группам, классам и  сингониям выглядит 
абсолютно неравномерным и нарушающим все ста-
тистические закономерности. Более того, эти распре-
деления существенно отличаются между собой для 
органических соединений, неорганических кристал-
лов и минералов. На этот факт одним из первых еще 
в 1940-х годах на сравнительно небольшой выборке 
из 3063 структурных определений указал Новацкий 

[Новацкий, 1949]. Им было отмечено резкое разли-
чие в симметрии пространственных групп для мине-
ралов и других неорганических соединений, с одной 
стороны, и для органических соединений, с другой. 
Если для минералов и неорганических соединений 
им было отмечено доминирование групп плотней-
ших упаковок, то для органических кристаллов от-
четливо проявилось преимущество моноклинных 
пространственных групп с винтовыми осями 21 и их 
сочетаниями с плоскостями скользящего отражения 
и  центрами инверсии. Это связано с  тем, что для 
таких кристаллов характерны зигзагообразные це-
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циально зарегистрированных минеральных видов 
сильно увеличилось и перевалило за шесть тысяч. 
Поэтому имело смысл провести новый подробный 
статистический анализ распределения кристалли-
ческих структур минералов по сингониям, классам 
симметрии и пространственным группам, опираясь 
на современную базу данных минеральных видов, 
утвержденных Международной минералогической 
ассоциацией (IMA). 

Методика расчета. Прежде чем перейти к под-
робному анализу относительной распространенно-
сти в структурной минералогии точечных классов 
симметрии и  пространственных групп, требуется 
сделать несколько предварительных замечаний. 

Первая ремарка относится к  разногласиям 
в  отечественной литературе относительно числа 
и названий сингоний. Заметим, что термин «синго-
ния» в переводе с греческого дословно обозначает 
одинаковые угловые соотношения между координат-
ными направлениями (syn — вместе, gonia — угол). 
Следовательно, классы симметрии должны раз-
деляться на сингонии в соответствии с выбранной 
кристаллографической системой координат. В свете 
современного знания о  структуре кристаллов за 
направления координатной системы выбираются 
трансляции ячейки Браве в стандартной установке. 
В зависимости от соотношения между степенями эк-
вивалентности трансляционных векторов и углами 
между направлениями можно выделить лишь шесть 
различных случаев [Сингония…, 2022]: a ≠ b ≠ c, 
α ≠ β ≠ γ (триклинная сингония); a ≠ b ≠ c, α = β = 90° ≠ γ 
(моноклинная сингония в  классической установ-
ке); a ≠ b ≠ c, α = β = γ = 90° (ромбическая сингония); 
a = b ≠ c, α = β = γ = 90° (тетрагональная сингония); 
a = b ≠ c, α = β=90°, γ = 120° (гексагональная сингония); 
a = b = c, α = β = γ = 90° (кубическая сингония). 

Заметим, что название «ромбическая сингония» 
связано с поперечным сечением в виде ромба про-
стых форм, присутствующих в огранке этих классов 
(ромбическая бипирамида, ромбическая призма 
и др.). Поэтому весьма часто используемый в научных 
публикациях термин «орторомбическая сингония», 
являющийся по существу механическим переводом 
с английского языка слова orthorombic, выглядит как 
искусственный американизм наподобие «Москау» 
вместо Москвы или «Бейюнга» вместо Пекина. 

Также заметим, что координатный репер гекса-
гональной сингонии объединяет классы симметрии 
как с осями 3-го, так и с осями 6-го порядков. Тем не 
менее, в многочисленной русскоязычной минерало-
гической и кристаллографической литературе (в том 
числе современной, см., например [Словохотов, 
2020]) часто встречается седьмая — тригональная 
сингония (с главной осью 3-го порядка). В этом слу-
чае разбиение на сингонии выполняется в зависимо-
сти от набора элементов симметрии, описывающих 
кристалл на макроскопическом уровне. 

Дополнительную путаницу в этот вопрос вносит 
то обстоятельство, что в англоязычной литературе 

почки молекул, являющиеся основным структурным 
мотивом большинства органических соединений; их 
взаимная укладка соответствует принципу «выступ 
к впадине», сформулированному Китайгородским 
[Китайгородский, 1955] и развитому в работах Зор-
кого [Зоркий, Олейников, 2001]. Опираясь на этот 
принцип, можно выделить пятнадцать наиболее 
вероятных для органических кристаллов простран-
ственных групп низшей категории.

Статистический анализ минералов и неоргани-
ческих кристаллов продолжился в работах Маккея 
[Mackay, 1967)], Баура и Касснера [Baur, Kassner, 1992], 
Доливо-Добровольского [Доливо-Добровольский, 
1987, 2002], Блатова c коллегами [Блатов и др., 1993, 
1997], Николаева [Николаев, 2000], Урусова и Наде-
жиной [Урусов, 2002; Урусов и Надежина, 2006, 2009] 
и других исследователей. Такой анализ кристалличе-
ских структур природных химических соединений 
в сравнении с синтетическими представляет собой 
особый интерес, поскольку все минералы являются 
наиболее стабильными веществами, прошедшими за 
геологическое время своего существования много-
численные стадии весьма жесткого так называемого 
«естественного отбора минеральных видов». По-
этому их число сильно ограничено (по крайней мере, 
на два порядка) относительно выборки возможных 
и  уже полученных в  лабораториях синтетических 
химических соединений; следовательно, статистика 
распределения минералов по классам и простран-
ственным группам может быть весьма своеобразна. 
И действительно, симметрийная статистика мине-
ралов и  неорганических соединений существенно 
отличается друг от друга. Как оказалось, для минера-
лов наиболее предпочтительными являются (так же, 
как и для органических кристаллов) моноклинные 
классы симметрии, тогда как для неорганических 
кристаллов — ромбические. Такое различие можно 
объяснить тем, что подавляющая часть минералов 
регистрируется преимущественно в самой поверх-
ностной оболочке Земли — Земной коре, что при-
водит к  включению в  структуру минералов таких 
низко-симметричных летучих комплексов как вода, 
углекислота, гидроксил-ион, неизбежно смещающие 
максимум распространенности для минералов от-
носительно неорганических кристаллов в сторону 
моноклинных и триклинных классов. Также важно, 
что в структурах минералов значимую роль играют 
относительно слабые водородные связи. Это приво-
дит к усложнению химического состава и заметному 
ограничению полей устойчивости таких минералов. 
А нестабильные или малоустойчивые кристалличе-
ские постройки отличаются как раз относительно 
низкой симметрией. Таким образом, данные Новац-
кого, полученные на крайне ограниченной выборке 
минералов, оказались не совсем достоверными. 

Вместе с тем, со времени последних подробных 
и  надежных статистических анализов [Николаев, 
2000; Урусов, 2002; Урусов, Надежина, 2006] про-
шло уже два десятилетия. За это время число офи-
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термину «сингония» соответствует сразу три опреде-
ления: «crystal family», «crystal system» и «lattice system» 
(до 2002  г.  — «Bravies systems»). Согласно опреде-
лению два кристалла относятся к  одному «crystal 
family» если они описываются пространственными 
ячейками одной метрики (отличающимися только 
центрировками). В  трехмерном пространстве на-
считывается шесть различных случаев [Crystal…, 
2019]. К одной «lattice system» относятся кристаллы 
с одинаковой симметрией узла решетки. В трехмер-
ном пространстве насчитывается семь таких случаев 
(добавляется ромбоэдрическая система) [Lattice..., 
2025]. Термин «crystal system» объединяет кристаллы 
по набору макроскопических элементов симме-
трии. В  трехмерном пространстве насчитывается 
семь случаев (добавляется тригональная система) 
[Crystal…, 2019]. Таким образом, пространственные 
группы гексагональной «crystal family» разделяются 
по порядку главной оси симметрии на две «crystal 
systems». Все группы с  главной поворотной или 
инверсионной осью третьего порядка (соответству-
ющие точечным классам 3, 3 , 32, 3m, 3m) образуют 
тригональную «crystal system», при этом решетка Бра-
ве может быть примитивной или ромбоэдрической. 
Пространственные группы с  главной поворотной 
или инверсионной осью шестого порядка (соответ-
ствующие точечным классам 6, 6 , 6/m, 622, 6mm, 
6m2 и  6/mmm) образуют гексагональную «crystal 
system» c примитивной гексагональной решеткой. 
Обратим внимание, что термин «тригональный» 
относится только к  «crystal system», а  не к  «lattice 
system» [Hann, 2005]. 

Таким образом, говоря о внешней огранке кри-
сталла и, ориентируясь на термин «crystal system», 
использование названия «тригональная сингония» 
вполне допустимо. Если же говорить о кристалли-
ческой структуре вещества, то классы симметрии 
с главной осью третьего и шестого порядков, имею-
щие одинаковую по метрике элементарную ячейку, 
должны относиться к одной, гексагональной, син-
гонии. Поэтому, во избежание путаницы в терми-
нологии, в  данной публикации будет говориться, 
что гексагональная сингония подразделяется на две 
подсингонии, различающиеся порядком главной оси 
симметрии (рис. 1).

Следующее предварительное замечание касает-
ся учета энантиоморфных пар пространственных 
групп. Заметим, что еще Новацкий в своей работе 
[1949] предложил частотный анализ относить не 
к  230, а  к 219  пространственным группам, объ-
единив 22 энантиоморфные группы в 11 пар. Такое 
объединение абсолютно оправдано, поскольку на-
рушение паритета в  распространенности любого 
из энантиомеров некоторого вещества может быть 
вызвано только исключительными причинами или 
специально подобранными условиями [Урусов, 
2012]. Даже с учетом этих обстоятельств, статистиче-
ская разница определений левых и правых форм для 
минералов не может превышать первых процентов. 

А часто наблюдаемые неравноправия определения 
при структурном анализе левых и  правых групп 
в  большинстве случаев связаны с  человеческим 
фактором. Так, кажущееся «неравноправие» двух 
энантиомеров убедительно демонстрируется на при-
мере кристаллических структур теллура и селена, ко-
торые в базе данных Пирсона PCD (Pearson’s Crystal 
Data) [Villars, 2022] отмечались 27 раз для теллура 
и 39 раз для селена. При этом все регистрации от-
носились к группе P3121 (№ 152) и ни разу к группе 
P3221 (№ 154). При этом совершенно очевидно, что 
для синтетических неорганических веществ веро-
ятности кристаллизации каждой из двух энанти-
оморфных модификаций совершенно одинаковы, 
и в многочисленных опытах должны образовываться 
рацемические (эквимолярные) смеси с соотношени-
ем обеих модификаций 1 : 1. Такие удивительные рас-
хождения были объяснены в работе Брока и Дуница 
[Brock, Dunitz, 1991] тем простым фактом, что более 
распространенная в энантиоморфной паре группа 
просто приводится в списке групп раньше и выбира-
ется в процессе структурной расшифровки первой. 
Поэтому статистический анализ в настоящей работе 
будет относиться именно к 219 группам, что с нашей 
точки зрения намного более корректно. 

Для проведения настоящего анализа была исполь-
зована выборка 21.02.2025 г., содержащая 6006 мине-
ралов, одобренных и утвержденных номенклатурной 
комиссией международной минералогической ас-
социации [IMA, 2025]. Большинство записей в базе 
данных однозначно фиксируют кристаллическую 
структуру в рамках одной пространственной груп-
пы. Однако в ряде случаев пространственная группа 
и  даже сингония минерала не определена в  базе 
данных однозначно. Например, для альстонита 
BaCa[CO3]2 приведены три возможные сингонии 
(триклинная, ромбическая и гексагональная) и лишь 
две возможные пространственные группы (С1  
и P31m). В подобных случаях использовались дроб-
ные вероятности. Запись альстонита была отнесена 
на 33,3 % к каждой сингонии и на 50 % к двум пред-
ставленным группам. В случае обнаружения в списке 
групп нескольких клонов одной пространственной 
группы они подлежали объединению. Например, для 
волластонита CaSiO3 представлено три записи про-
странственных групп P21/a, C1  1и P1 . Но поскольку 
две последние записи относятся к одной группе, то 
вклад от этого минерала в общий статистический 
анализ будет составлять 50 % как для группы № 2, 
так и для группы № 14. Однако, как будет показано 
ниже, такой метод оценки не оказал принципиаль-
ного влияния на общую картину статистического 
распределения.

Распределение минералов по сингониям и клас-
сам симметрии. На рис. 2 приведено распределение 
минералов по сингониям в сравнении с выборками 
2000 и 2002 годов, содержащих 3958 [Николаев, 2000] 
и 2820 [Урусов, 2002] записей, соответственно. Из 
6006  записей в  анализируемой базе данных [IMA, 
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Рис. 1. Распределение 32 классов симметрии по категориям и сингониям

2025]однозначно привязано к определенной синго-
нии 5404 минерала, а неоднозначно — 5722 минера-
ла. Как видно, добавление дробных неоднозначных 
определений абсолютно не повлияло на общую кар-
тину распределения по сингониям, и тем более на их 
ранги. Тем не менее, обратим внимание и на произо-
шедшие изменения рангов по сравнению с выборкой 
2002 г.: триклинная сингония сменила низший 6-й 
ранг на 4-й, обогнав и кубическую и тетрагональную 
сингонию. Также отметим увеличившийся разрыв 
между моноклинной (ранг 1) и ромбической (ранг 2) 
сингонией. Если в 2002 г. разница между ними со-
ставляла 9,5 %, то в настоящее время она выросла 
до 14,5 %. С другой стороны, если в 2002 г. разница 
между ромбической и  гексагональной сингонией 
(ранг 3) была весьма существенна и составляла 180 
минеральных видов (6,4 % выборки), то в  2025  г. 
разрыв сильно уменьшился и  составил всего 61 

минеральный вид (1,07 %). В целом, три сингонии 
улучшили свою долю в общей выборке относительно 
данных начала XXI  в. (триклинная +2,7 %, моно-
клинная +3,1 %, гексагональная +3,5 %), тогда как 
три оставшиеся заметно потеряли в относительной 
распространенности (ромбическая –1,8 %, тетраго-
нальная –4,1 %, кубическая –3,4 %) (рис. 3). 

При составлении гистограммы, приведенной на 
рис. 3, использовались сводки из работ Вернадско-
го [Вернадский, 1988], Новацкого [Nowacki, 1942], 
Шафрановского [Шафрановский, 1983], Николаева 
[Николаев, 2000] и  Урусова [Урусов, 2002] в  срав-
нении с результатами настоящего анализа. Анали-
зируя эту гистограмму, можно сделать вывод, что, 
несмотря на более чем десятикратный рост числа 
минералов, их относительное распределение по син-
гониям изменилось непринципиально. Несколько 
выпадающие данные Новацкого связаны с тем, что 
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Рис. 2. Распределение минералов по сингониям в сравнении с данными Николаева [2000] и Урусова [2002]

Рис. 3. Гистограмма изменения вклада каждой сингонии в  общее число минеральных видов согласно наблюдениям в  период 
с 1855 по 2025 гг. 



8 ВЕСТН. МОСК. УН-ТА. СЕР. 4. ГЕОЛОГИЯ. 2025. № 6

Рис. 4. Распределение 5293 минералов по классам симметрии: а — распределение минеральных видов по классам низшей категории, 
б — по классам гексагональной сингонии, в — по классам тетрагональной и кубической сингонии
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он включил в свою выборку лишь около половины 
известных к 1942 г. минералов, причем преимущест-
венно высокосимметричных. 

Из 6006 записей отсутствует информация о классе 
симметрии в 713 случаях. Результаты распределения 
оставшихся 5293 минералов по классам симметрии 
приведены на рис. 4 и в табл. 1, в которой помимо 
процентной заселенности класса, указан также его 
коэффициент относительной распространенности k 
относительно среднего значения 5293/32. Как видно, 
распространенных классов с  k > 1 оказалось всего 
семь, среди которых пять голоэдрических (плюс 
голоэдрический класс тригональной подсингонии). 
Отметим огромную распространенность моноклин-
ного класса 2/m (30,7 %, k = 9,82). Любопытно, что 
голоэдрический класс 6/mmm с величиной k = 0,78 не 
попал в число распространенных, проиграв внутри 
своей гексагональной сингонии и  тригональной 
голоэдрии 3m, и даже классу 3m. Это может быть 
объяснено тем, что внутри гексагонального мотива 
кристаллы предпочтительнее выбирают классы 
с осями 3-го порядка, автоматически понижая рас-
пространенность голоэдрического. Этот факт еще 
раз демонстрирует близкую родственность групп 
с осями третьего и шестого порядков и обоснован-
ность выделения шести, а  не семи сингоний при 
анализе кристаллических структур. 

К классам средней заселенности логично отнести 
18 классов с величиной k > 0,1. Тогда у семи редких 
классов значения k будут меньше, чем 0,1. Заметим, 
что среди них ни одного класса низшей категории. 
Также отметим, что абсолютно пустых классов 
симметрии не зафиксировано, хотя тетрагональный 
осевой класс 4 крайне редко встречается в  струк-
турах минералов; его k = 0,02, что соответствует 
значению распространенности всего 0,06 %. Тем не 
менее, в этом классе зафиксировано две достоверные 
и  однозначные записи (La2Si2O7  — перклевеит-La 
и Ce2Si2O7 — перклевеит-Ce). 

Распределение минералов по пространствен-
ным группам. Всего из 6006  записей однозначно 
или неоднозначно пространственные группы были 
указаны для 5721 минерала. Результаты обработки 
этой выборки приведены в табл. 2. Согласно клас-
сификации, изложенной в [Урусов, Надежина, 2009], 
пространственные группы принято разделять на 
распространенные (с заселенностью ≥ 1 % по всей 
выборке структурных определений), средней засе-
ленности (0,5–1 %), малозаселенные (частота встре-
чаемости менее 0,5 %) и пустые (без структурных 
представителей). Очевидно, учитывая возросшую 
выборку, имеет также смысл ввести категорию «ред-
ких групп» (менее двух структурных регистраций), 
которые требуют повышенного внимания и  воз-
можной ревизии. Таких групп 29; их список при-
веден в табл. 3. Всего же из 219 групп 20 относятся 
к распространенным (на них приходится 64,9 % всех 
регистраций), 20 — к группам средней заселенности 
(14,3 %) и 116 малозаселенных групп (20,2 %). 

Та б л и ц а  1

Распределение 5293 минералов по классам симметрии 

Ра
нг

 Класс Сингония

За
се

ле
н-

но
ст

ь,
 %

k Классифи-
кация

1 2/m моноклинная* 30,70 9,82

распро-
странен-
ный

2 mmm ромбическая* 13,96 4,47
3 1 1триклинная* 10,03 3,21
4 3m гексагональная* 5,12 1,64
5 m3m кубическая* 5,01 1,60
6 mm2 ромбическая 3,54 1,13
7 4/mmm тетрагональная* 3,54 1,13
8 3m гексагональная 2,80 0,90

средний

9 6/mmm гексагональная* 2,44 0,78
10 3 гексагональная 2,30 0,74
11 43m кубическая 2,29 0,73
12 m моноклинная 2,15 0,69
13 2 моноклинная 1,88 0,60
14 222 ромбическая 1,71 0,55
15 6/m гексагональная 1,37 0,44
16 4/m тетрагональная 1,26 0,40

17 1 триклинная 1,21 0,39

18 m3 кубическая 1,13 0,36
19 4m2 тетрагональная 1,10 0,35
20 32 гексагональная 1,09 0,35
21 6 гексагональная 0,94 0,30
22 3 гексагональная 0,93 0,30
23 6mm гексагональная 0,89 0,28
23 23 кубическая 0,68 0,22
25 6m2 гексагональная 0,57 0,18
26 422 тетрагональная 0,32 0,10

редкий

27 622 гексагональная 0,31 0,10
28 6 гексагональная 0,19 0,06
29 4 тетрагональная 0,18 0,06
30 4mm тетрагональная 0,17 0,05
31 432 кубическая 0,12 0,04
32 4 тетрагональная 0,06 0,02

Примечание. * — голоэдрические классы.

В триклинной сингонии всего две простран-
ственные группы, причем обе распространенные. 
Группа P1  имеет вообще второй ранг среди всех 
пространственных групп (10,03 %), а группа P1 — во-
семнадцатый (1,21 %). Заметим, что доля группы P1 
среди триклинных минералов за 20 лет существенно 
уменьшилась (2002 г. — 16,3 %; 2025 г. — 10,5 %). Это 
связано, в том числе, и с возросшим качеством струк-
турных расшифровок, позволяющих более надежно 
фиксировать в структурах центр инверсии. Так, еще 



10 ВЕСТН. МОСК. УН-ТА. СЕР. 4. ГЕОЛОГИЯ. 2025. № 6

Та б л и ц а  2

Распределение минералов по пространственным 
группам симметрии 

Ра
нг Группа

№
 гр

уп
-

пы Чи
сл

о 
ре

ги
-

ст
ра

-
ци

й 
(n

)

Класс Частота 
(% от 5722) Тип

1 P21/с 14 643,77 2/m 12,163 %

рас

2 P1 2 531,08 1 10,034 %
3 C2/m 12 409,57 2/m 7,738 %
4 B2/b 15 328,80 2/m 6,212 %
5 Pnma 62 283,68 mmm 5,360 %
6 P21/m 11 160,32 2/m 3,029 %
7 R3m 166 138,48 3m 2,616 %
8 Fd3m 227 97,33 m3m 1,839 %
9 R3 148 95,08 3 1,796 %

10 R3m 160 86,87 3m 1,641 %
11 P63/mmc 194 74,94 6/mmm 1,416 %
12 Fm3m 225 74,28 m3m 1,403 %
13 P63/m 176 70,50 6/m 1,332 %
14 P2/b 13 68,50 2/m 1,294 %
15 P3m1 164 65,33 3m 1,234 %
16 Cmcm 63 65,00 mmm 1,228 %
17 Pbca 61 64,75 mmm 1,223 %
18 P1 1 63,83 1 1,206 %
19 Pbcn 60 59,50 mmm 1,124 %
20 P212121 19 53,60 222 1,013 %
21 Bb 9 52,11 m 0,985 %

сред

22 P21 4 50,96 2 0,963 %
23 P63 173 48,08 6 0,908 %
24 I43m 217 48,00 43m 0,907 %
25 Pnnm 58 45,17 mmm 0,853 %
26 P63mc 186 43,78 6mm 0,827 %
27 B2 5 42,58 2 0,804 %
28 R3c 167 41,33 3m 0,781 %
29 Pmn21 31 37,17 mm2 0,702 %
30 I4/mmm 139 37,03 4/mmm 0,700 %
31 Ia3d 230 36,50 m3m 0,690 %
32 Bm 8 34,70 m 0,656 %
33 Pna21 33 34,00 mm2 0,642 %
34 Pm3m 221 32,73 m3m 0,618 %
35 I41/amd 141 32,00 4/mmm 0,605 %
36 Pa3 205 31,50 m3 0,595 %
37 P6/mcc 192 30,50 6/mmm 0,576 %
38 Pmmn 59 27,50 mmm 0,520 %
39 F43m 216 26,77 43m 0,506 %
40 P3 147 26,50 3 0,501 %
41 Cmca 64 26,06 mmm 0,492 %

м/с
42 R3c 161 25,00 3m 0,472 %
43 Pb 7 24,00 m 0,453 %
44 I4/m 87 23,17 4/m 0,438 %
45 P3 143 22,83 3 0,431 %

Ра
нг Группа

№
 гр

уп
-

пы Чи
сл

о 
ре

ги
-

ст
ра

-
ци

й 
(n

)

Класс Частота 
(% от 5722) Тип

46 Cmc21 36 22,58 mm2 0,427 %

м/с

47 P31c 159 22,17 3m 0,419 %
48 P213 198 22,00 23 0,416 %
49 P43m 215 21,67 43m 0,409 %
50 Pca21 29 21,20 mm2 0,401 %
51 R3 146 20,83 3 0,394 %
52 I41/a 88 20,83 4/m 0,394 %
53 I42m 121 20,00 4m2 0,378 %
54 P4/nmm 129 19,08 4/mmm 0,361 %
55 P321 150 18,58 32 0,351 %
56 Imma 74 18,50 mmm 0,350 %
57 P42/mnm 136 18,17 4/mmm 0,343 %
58 P4/ncc 130 18,08 4/mmm 0,342 %

59 P3121 + 
P3221

152, 
154 17,77 32 0,336 % 

(11,75+6,02)
60 Pbcm 57 17,70 mmm 0,334 %
61 Pbam 55 16,33 mmm 0,309 %
62 I41/acd 142 16,17 4/mmm 0,305 %
63 I42d 122 15,50 4m2 0,293 %
64 R32 155 15,00 32 0,283 %
65 P3c1 165 14,17 3m 0,268 %
66 P2/m 10 14,00 2/m 0,265 %
67 P4/mmm 123 13,00 4/mmm 0,246 %
68 P6/mmm 191 13,00 6/mmm 0,246 %
69 I43d 220 13,00 43m 0,246 %
70 P4/n 85 12,92 4/m 0,244 %
71 Pmc21 26 12,87 mm2 0,243 %
72 Fdd2 43 12,33 mm2 0,233 %
73 Pccn 56 12,25 mmm 0,231 %

74 P41212 + 
P43212 92, 96 11,67 422 0,220 % 

(9,5+2,17)
75 P62c 190 11,50 6m2 0,217 %
76 C2221 20 11,30 222 0,213 %
77 Fddd 70 11,08 mmm 0,209 %
78 P21212 18 11,00 222 0,208 %
79 Im3m 229 10,75 m3m 0,203 %
80 P421m 113 10,50 4m2 0,198 %
81 P63/mcm 193 10,50 6/mmm 0,198 %
82 P43n 218 10,42 43m 0,197 %
83 Pmma 51 10,00 mmm 0,189 %
84 P6 174 10,00 6 0,189 %
85 P62m 189 9,83 6m2 0,186 %
86 I4 82 9,50 4 0,179 %
87 Immm 71 9,33 mmm 0,176 %
88 Ccca 68 9,00 mmm 0,170 %
89 Ibam 72 9,00 mmm 0,170 %
90 P6322 182 8,83 622 0,167 %
91 Pnna 52 8,50 mmm 0,161 %
92 Fd3 203 8,17 m3 0,154 %
93 Pcca 54 8,11 mmm 0,153 %
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Ра
нг Группа

№
 гр

уп
-

пы Чи
сл

о 
ре

ги
-

ст
ра

-
ци

й 
(n

)

Класс Частота 
(% от 5722) Тип

94 Cccm 66 8,00 mmm 0,151 %

м/с

95 P31m 162 8,00 3m 0,151 %
96 Fd3c 228 8,00 m3m 0,151 %
97 I213 199 7,50 23 0,142 %
98 Ia3 206 7,17 m3 0,135 %
99 Pmmm 47 7,00 mmm 0,132 %

100 P31m 157 6,83 3m 0,129 %
101 Pnn2 34 6,50 mm2 0,123 %
102 P42/n 86 6,50 4/m 0,123 %
103 P42/mbc 135 6,33 4/mmm 0,120 %
104 P2 3 6,00 2 0,113 %
105 Pmna 53 6,00 mmm 0,113 %
106 P3m1 156 6,00 3m 0,113 %
107 P6m2 187 6,00 6m2 0,113 %
108 Pn3 201 5,50 m3 0,104 %

109 P31 + P32
144, 
145 5,33 3 0,101 % 

(3,5+1,83)
110 Cmmm 65 5,29 mmm 0,100 %
111 Imm2 44 5,25 mm2 0,099 %

112 P6222 + 
P6422

180, 
181 5,17 622 0,098 % 

(4,83+0,33)
113 I4/mcm 140 5,17 4/mmm 0,098 %
114 Pma2 28 5,00 mm2 0,094 %
115 Aba2 41 5,00 mm2 0,094 %
116 Im3 204 5,00 m3 0,094 %
117 Pban 50 4,78 mmm 0,090 %
118 P4/mcc 124 4,50 4/mmm 0,085 %
119 Pn3m 224 4,50 m3m 0,085 %
120 Amm2 38 4,25 mm2 0,080 %
121 Ama2 40 4,10 mm2 0,077 %
122 Ima2 46 4,08 mm2 0,077 %
123 P2221 17 4,03 222 0,076 %

124 P4122 + 
P4322 91, 95 4,00 422 0,076 % 

(2,0+2,0)
125 P4bm 100 4,00 4mm 0,076 %
126 P4/mnc 128 4,00 4/mmm 0,076 %
127 I23 197 4,00 23 0,076 %
128 P31c 163 3,83 3m 0,072 %
129 P222 16 3,50 222 0,066 %
130 Pmm2 25 3,50 mm2 0,066 %
131 P4mm 99 3,50 4mm 0,066 %

132 P3112 + 
P3212

151, 
153 3,45 32 0,065 % 

(3,45+0,0)

133 P4132 + 
P4332

213, 
212 3,33 432 0,063 % 

(2,17+1,17)
134 P63cm 185 3,33 6mm 0,063 %
135 Pm 6 3,25 m 0,061 %
136 I222 23 3,00 222 0,057 %
137 P4m2 115 3,00 4m2 0,057 %
138 P312 149 3,00 32 0,057 %
139 P6c2 188 3,00 6m2 0,057 %

Ра
нг Группа

№
 гр

уп
-

пы Чи
сл

о 
ре

ги
-

ст
ра

-
ци

й 
(n

)

Класс Частота 
(% от 5722) Тип

140 Cmma 67 2,78 mmm 0,052 %

м/c

141 C222 21 2,75 222 0,052 %
142 P42/m 84 2,50 4/m 0,047 %
143 P42m 111 2,50 4m2 0,047 %
144 P42/nnm 134 2,50 4/mmm 0,047 %
145 P622 177 2,50 622 0,047 %
146 I4132 214 2,50 432 0,047 %
147 P421c 114 2,33 4m2 0,044 %
148 P4/mbm 127 2,33 4/mmm 0,044 %
149 Pm3 200 2,25 m3 0,043 %
150 Ibca 73 2,17 mmm 0,041 %
151 Pba2 32 2,00 mm2 0,038 %

152 P41 + P43 76, 78 2,00 4 0,038 % 
(2,0+0,0)

153 P4c2 116 2,00 4m2 0,038 %
154 P42/mmc 131 2,00 4/mmm 0,038 %
155 P42/mcm 132 2,00 4/mmm 0,038 %
156 P6/m 175 2,00 6/m 0,038 %
157 F23 196 1,87 23 0,035 %

ред

158 P42/nmc 137 1,75 4/mmm 0,033 %

159 P61 + P65
169, 
170 1,60 6 0,030 % 

(1,6+0,0)
160 Pnc2 30 1,50 mm2 0,028 %
161 Cmm2 35 1,50 mm2 0,028 %
162 Iba2 45 1,50 mm2 0,028 %
163 P4/nnc 126 1,50 4/mmm 0,028 %
164 P42/nbc 133 1,50 4/mmm 0,028 %
165 F43c 219 1,50 43m 0,028 %
166 Fmmm 69 1,45 4/mmm 0,028 %
167 I4m2 119 1,33 4m2 0,025 %
168 Pm3n 223 1,33 m3m 0,025 %
169 P3c1 158 1,25 3m 0,024 %
170 F222 22 1,00 222 0,019 %
171 Ccc2 37 1,00 mm2 0,019 %
172 Abm2 39 1,00 mm2 0,019 %
173 Fmm2 42 1,00 mm2 0,019 %
174 I4122 98 1,00 422 0,019 %
175 I41cd 110 1,00 4mm 0,019 %
176 P4b2 117 0,83 4m2 0,019 %
177 P4/m 83 0,83 4/m 0,016 %
178 P23 195 0,58 23 0,011 %
179 P42 77 0,50 4 0,009 %
180 I4 79 0,50 4 0,009 %
181 I422 97 0,50 422 0,009 %
182 F4132 210 0,50 432 0,009 %
183 P4nc 104 0,333 4mm 0,006 %
184 P432 207 0,333 432 0,006 %
185 I212121 24 0,25 222 0,005 %

Примечание: рас — распространенный, сред — средний, м/з — 
малозаселенный, ред — редкий.
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Та б л и ц а  3

Минералы «редких» пространственных групп 

Ра
нг

Группа
№

 гр
уп

пы

Чи
сл

о 
ре

-
ги

ст
ра

ци
й 

(n
)

Минерал (вероятность)

157 F23* 196 1,87
тулулит (1,0), берцелианит 
(0,333), гидроксикальциоро-
меит (0,333), борнит (0,2)

158 P42/nmc* 137 1,75 цироит (1,0), кокцинит (0,5), 
метацейнерит (0,25)

159 P61* + P65* 169, 
170 1,60 нагельшмидтит (1,0), трине-

фелин (0,5), ватерит (0,1)
160 Pnc2 30 1,50 терскит (1,0), арменит (0,5)

161 Cmm2 35 1,50 сегелерит (1,0), кеншоит 
(0,5)

162 Iba2* 45 1,50 строналсит (1,0), банальсит 
(0,5)

163 P4/nnc* 126 1,50 абернатиит (0,5), чернико-
вит (0,5), цейнерит (0,5)

164 P42/nbc* 133 1,50 денингит (1,0), меланофло-
гит (0,5)

165 F43c 219 1,50 рудабаньяит (1,0), борацит 
(0,5)

166 Fmmm 69 1,45
стилбит-Ca (0,5), баррерит 
(0,5), стеллерит (0,33), гра-
фит (0,11)

167 I4m2 119 1,33 гарронит-Ca (0,5), джасмун-
дит (0,5), мошелит (0,33)

168 Pm3n 223 1,33 вольфрам (0,5), меланофло-
гит (0,5), содалит (0,33)

169 P3c1* 158 1,25 эринит (1,0), берборит (0,25)

170 F222* 22 1,00 псевдограндрифит (1,0)

171 Ccc2* 37 1,00 искандаровит (1,0)

172 Abm2* 39 1,00 смирнит (1,0)

173 Fmm2* 42 1,00 агриньерит (1,0)

174 I4122* 98 1,00 поттсит (1,0)

175 I41cd* 110 1,00 кингсгатеит (1,0)

176 P4b2* 117 0,83 сферобисмоит (0,5), сурик 
(0,333)

177 P4/m* 83 0,83 швертмантит (0,5), 
маннардит (0,333)

178 P23* 195 0,58 носеан (0,333), лазурит 
(0,25)

179 P42 77 0,50 пинноит (0,5)

180 I4 79 0,50 пийпит (0,5)

181 I422 97 0,50 эканит (0,5)

182 F4132* 210 0,50 сахаит (0,5)

183 P4nc* 104 0,33 везувианит (0,333)

184 P432* 207 0,33 палладсеит (0,333)

185 I212121* 24 0,25 веберит (0,25)

Примечание. Звездочкой отмечены группы, относившиеся к ка-
тегории «пустых» по данным [Урусов, Надежина, 2006].

в 1999 г. Марш в своем обзоре [Мarsh, 1999] указал 
на то, что около 20 % содержащихся в Кембриджском 
банке структурных данных расшифровок с группой 
P1 должны описываться группой более высокой 
симметрии. Заметим, что почти половина из этих 
случаев была объяснена Маршем даже не ошибками 
структурных расшифровок, а просто потерей черты 
над единицей при публикации символа P1 . Успешное 
решение этой чисто технической проблемы путем 
перехода от печатных машинок к  компьютерной 
верстке в XXI в. весьма наглядно отражается в воз-
растании относительной доли центросимметричной 
группы P1  у триклинных минералов.

В моноклинной сингонии тринадцать простран-
ственных групп. Из них 5 распространенных, причем 
все они относятся к классу 2/m, при этом группа P21/c 
(№14) является абсолютным рекордсменом (12,16 % 
всех регистраций), а группа C2/m — третья по рас-
пространенности (7,74 %). Еще 4 группы относятся 
к группам средней заселенности, а оставшиеся че-
тыре группы — малозаселенные. 

В ромбической сингонии 59 пространственных 
групп. Из них 5 распространенных. Безусловный 
лидер сингонии — группа Pnma — 5,36 % регистра-
ций. Четыре группы относятся к среднезаселенным, 
а 38 — к малозаселенным. Девять групп являются 
редкими, а три (Pcc2, Pnnn, Pccm) — пустыми. 

Наиболее многочисленная по числу групп (65) те-
трагональная сингония является, тем не менее, самой 
малозаселенной. В ней находится 20 пустых групп 
(25 в 2002 г.), 12 редких (20 в 2002 г.) и 31 малозасе-
ленная группа. Только две группы — I4/mmm (30-й 
ранг, 0,70 %) и I41/amd (35-й ранг, 0,61 %) относятся 
к среднезаселенным. 

Из 52 групп гексагональной сингонии семь пу-
стых (10 в 2002 г.) и три редкие (9 в 2002 г.). Трид-
цать одна группа относится к малозаселенным, еще 
пять — к группам средней заселенности. Отметим, 
что из шести распространенных групп четыре 
описывают симметрию плотнейших упаковок 
различной слойности (R3m, R3m, P63/mmc и P3m) 
[Еремин, Еремина, 2018]. Это неудивительно, по-
скольку факты повышенной распространенности 
структурных мотивов минералов, построенных на 
основе плотнейших упаковок, отмечались неодно-
кратно [Белов, 1947, 1976, Lima de Faria, 2012, Еремин 
и др., 2024, 2025]. 

36 кубических пространственных групп распре-
делились по распространенности следующим об-
разом: две распространенные (из них группа Fm3m 
(№ 225, ранг 12) описывает симметрию кубической 
ПУ), пять — средней заселенности, семнадцать — 
малозаселенных, шесть редких (8 в 2002 г.) и столько 
же пустых (10 в 2002 г.). 

Таким образом, на начало 2025  г. из 219  про-
странственных групп абсолютно пустыми являются 
36  групп (34 с  учетом энантиоморфных пар, см. 
табл. 4), что заметно меньше, чем в 2006 г. — 57 (54) 
и, тем более, в выборке 1966 г. (112) [Поваренных, 
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версии 2022–23  гг. [Villars, 2022]. Использованная 
версия базы содержала 379 736  записей для при-
мерно 210 000 различных химических формул. Как 
видно из табл. 4, в настоящей момент в группе P422 
зафиксировано четыре синтетических соединения, 
причем для двух (Al72.8Ga39.2Y28 и Cu2La2O15Sr6Ti2) 
выполнена достоверная структурная расшифров-
ка. Группа P4222 с различной долей достоверности 
заселена тремя представителями. В группе P42cn — 
две достоверно решенные структуры (Ge13Pt4Yb3 
и Mg11.92Ni2.32Sn1.76). И, наконец, в группе P6 отмече-
но целых 28 соединений, в том числе шесть с полной 
структурной расшифровкой. 

Единственная структурная расшифровка отме-
чена в группе I432 (№ 211) [Соколова и др., 1993]. 
В  цитируемой работе изучались продукты прока-
ливания ромбического минерала царегородцевита 
N[CH3]4AlSi5O12. При T = 970 °C было зафиксировано 
образование кубической фазы с  симметрией I432. 
Фаза была интерпретирована как структура с  це-
олитоподобным каркасом, в  котором произошло 
разрушение сложных катионов тетраметиламмония 
и последующая статистическая локализация атомов 
углерода в каналах структуры. Поскольку структура 
была решена до Rw = 4,1 %, то корректность модели 
и достоверность полученных результатов сомнению 
не подвергаются. 

Любопытно также проследить уже неоднократно 
отмеченное выше неравноправие энантиоморфных 
пар: в  группе P62 (№ 171) отмечено 4 соединения, 
тогда как в группе P64 (№ 172) — ни одного. Также 
формально пустой осталась группа P6522 (№ 179), 
тогда как у ее энантиомера — группы P6122 (№ 178) 
отмечено целых 102 соединения. Таким образом, 
можно сделать вывод, что на текущий момент 
абсолютно пустых групп в  неорганической кри-
сталлохимии не осталось. А  число пустых групп 
в  структурной минералогии заметно сократилось 
с 54 (57) в 2002 г. до 34 (36). Возможно, к ним стоит 

1966]. Обратим также внимание, что во всех энан-
тиоморфных парах распространенность групп 
с меньшим номером заметно выше (см. табл. 2, 4), что 
подтверждает озвученную выше гипотезу об опреде-
ляющей роли человеческого фактора в структурных 
определениях таких кристаллов.

Из 29 (30 с  учетом энантиоморфной пары 
P61 + P65) отмеченных в табл. 3 редких групп 21 груп-
па числилась в  работе [Урусов, Надежина, 2006] 
пустой. Таким образом, можно сказать, что за два 
десятилетия произошло существенное сокращение 
пустых пространственных групп в  структурной 
минералогии. Анализируя данные табл. 3, можно 
увидеть, что с большой долей вероятности покинули 
категорию пустых групп по меньшей мере 20 групп, 
имеющих ранги от 157 до 175. Остальные десять 
групп не имеют структур минералов, расшифро-
ванных в рамках этой группы с вероятностью более, 
чем на 1/2. В  подавляющем большинстве случаев 
такая вероятность в реальности значительно меньше 
половины, поскольку альтернативами этих групп 
предлагаются более распространенные конкуренты. 
Так, отмеченные в [Урусов, Надежина, 2006] как за-
селенные единственными представителями группы 
P42 (пинноит) и I4 (пийпит), имеют в качестве аль-
тернативных моделей структурных расшифровок 
минералов более распространенные группы P42/n 
(ранг 102) и  P4/n (ранг 70) соответственно, что 
заставляет относить эти две группы и  остальные 
с рангами 176–185 к потенциально пустым. 

Любопытно посмотреть заселенность 34(36) пу-
стых минералогических пространственных групп 
неорганическими соединениями. В работе [Урусов, 
Надежина, 2009] абсолютно незаселенными неорга-
ническими соединениями группами признавались 
четыре: P422 (№  89), P4222 (№  93), P42cn (№  101) 
и  P6 (№  168). Они выделены в  табл. 4 жирным 
шрифтом. Все группы из табл. 4 были проанали-
зированы с  помощью базы данных Пирсона PCD 

Та б л и ц а  4
Пустые пространственные группы в структурной минералогии на начало 2025 г. 

и их заселенность неорганическими соединениями 

Группа (№) PCD, 2023 Группа (№) PCD, 2023 Группа (№) PCD, 2023 Группа (№) PCD, 2023

Pcc2 (27) 7 P6522 (179) 0 P4n2 (118) 52 P42nm (102) 37

P4 (75) 42 Fm3  (202) 91 P42/ncm (138) 85 P42bc (106) 21

P422 (89) 4 I432 (211) 1 P64 (172) 0 I41md (109) 119

P42212 (94) 19 Pnnn (48) 43 P6mm (183) 31 I4c2 (120) 35

P4cc (103) 4 I41 (80) 35 P4232 (208) 38 P6 (168) 28

I4mm (107) 256 P4212 (90) 23 Pn3n (222) 134 P6122 (178) 102

P42с (112) 37 P42cn (101) 2 Pccm (49) 30 P6cc (184) 16

P4/nbm (125) 201 P42mc (105) 15 P4 (81) 54 F432 (209) 7

P62 (171) 4 I4cm (108) 54 P4222 (93) 3 Fm3c (226) 426

Примечание. Жирным шрифтом выделены группы, считавшиеся в работе [Урусов, Надежина, 2009] абсолютно незаселенными.
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отнести дополнительно еще десять потенциально 
пустых групп с рангами 176–185.

Выводы. Таким образом, в результате проведен-
ного статистического анализа распространенности 
кристаллических структур минералов по классам 
симметрии и  пространственным группам можно 
сделать следующие выводы.

1. Существенно выросший за два десятилетия 
банк данных структурных регистраций не оказал 
принципиального влияния на вклады каждой из 
шести сингоний в общее число минеральных видов. 
Тем не менее, по сравнению с выборкой 2002 г. про-
изошли определенные изменения рангов: в  част-
ности, триклинная сингония сменила 6-ой ранг 
на 4-ый, обогнав и кубическую и тетрагональную 
сингонию. 

2. Распределение 5293  минералов по классам 
симметрии показало, что лишь семь классов об-
ладают повышенной распространенностью. Явным 
лидером является голоэдрический моноклинный 
класс 2/m на долю которого приходится более 30 % 
всех кристаллических структур минералов. А  из 
семи выявленных распространенных классов пять 
являются голоэдрическими (при этом отмечены все 
сингонии, кроме тетрагональной, а гексагональная 
сингония представлена голоэдрией тригональной 
подсингонии). Голоэдрический класс 6/mmm гек-
сагональной подсингонии не попал в  число рас-
пространенных. Этот факт еще раз демонстрирует 
близкую родственность групп с  осями третьего 
и шестого порядков и обоснованность выделения 
шести, а не семи сингоний при анализе кристалли-
ческих структур.

3. Из 219 пространственных групп абсолютно пу-
стыми относительно минеральных представителей 
являются 36  групп (34 с  учетом энантиоморфных 
пар), что заметно меньше, чем в 2006 г. — 57 (54). 
Заметим, что все эти пустые для структурной ми-
нералогии группы в настоящее время заселены не-
органическими соединениями (тогда как в  2006  г. 
отмечалось 4 абсолютно пустые группы). Это поз-
воляет сделать вывод о полной заселенности неор-
ганическими кристаллами пространственных групп 
симметрии согласно новым данным. 

Прогнозируя дату (год, и, возможно, даже век) 
полной заселенности минеральными представи-
телями всех пространственных групп симметрии, 
можно проявить определенный вполне обоснован-
ный пессимизм. Несмотря на отмеченное заметное 
сокращение числа пустых групп, уменьшение про-
изошло, в основном, за счет групп и классов низкой 
симметрии. Этот факт подчеркивает заметно увели-
чившуюся в последние десятилетия долю структур-
ных расшифровок редких, метастабильных и «хро-
ноксенных» фумарольных минералов, обладающих 
пониженной собственной симметрией. Отсутствие 
или редкость многих гексагональных и особенно 

тетрагональных пространственных групп объяс-
няется наличием намного более распространенных 
их псевдосимметричных подгрупп ромбической, 
моноклинной и  тригональной симметрии. Таким 
образом, если принять во внимание, что число 
ежегодных регистраций новых минеральных ви-
дов имеет тенденцию на стабилизацию (если не на 
уменьшение), то вероятность появления нового 
минерала из топологически «малокомфортной» 
пространственной группы оказывается крайне 
малой величиной. Особый скепсис вызывают тетра-
гональные группы симметрии, которые даже с энер-
гетической точки зрения всегда будут проигрывать 
своим гексагональным и  псевдогексагональным 
аналогам. Этот факт наглядно проявляется при 
сравнительной распространенности и устойчиво-
сти координационных полиэдров с треугольными 
гранями относительно четырехугольных. Таким 
образом, объяснение резкой неравноценности 
пространственных групп в отношении их распро-
страненности в обязательном порядке затрагивает 
и анализ условий устойчивости кристаллической 
структуры с позиций минимума энергии межатом-
ных взаимодействий. Представленный в работе ста-
тистический геометрический анализ является лишь 
следствием этого энергетического естественного 
отбора. С  точки зрения энергетической устойчи-
вости кристаллической структуры существенный 
выигрыш достигается про локализации атомов 
или молекулярных группировок в  равновесных 
инвариантных позициях, в  которых симметрия 
сил, действующих на объект в этих точках, авто-
матически равна нулю, поскольку такие позиции 
описываются одним из центросимметричных 
точечных классов. В этом состоит объяснение вы-
сокой распространенности именно голоэдрических 
пространственных групп.

Также необходимо отметить, что представленная 
статистика никоим образом не противоречит не-
однократно высказываемому тезису о более высокой 
устойчивости высокосимметричных минералов 
[Шафрановский, 1983]. Действительно, симметрий-
ная статистика учитывает лишь формальное коли-
чество отдельных минеральных видов, что приводит 
к уравниванию редчайших представителей с широко 
распространенными в природе породообразующи-
ми минералами. Корректное введение некоторой 
весовой функции, учитывающей объемные про-
порции минералов в Земной коре, как было указано 
в [Урусов, 2002], наглядно продемонстрирует спра-
ведливость тезиса о стремлении кристаллического 
вещества к максимально высокой симметрии в про-
цессах равновесного минералообразования.
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