СТРУКТУРНЫЕ ПРЕОБРАЗОВАНИЯ И ФАЗОВЫЙ ПЕРЕХОД ФРУДИТ (α-PdBi₂) — УРВАНЦЕВИТ (β-PdBi₂) ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

Оксана Владимировна Каримова^{1⊠}, Николай Николаевич Еремин², Анна Алексеевна Межуева³, Наталия Сергеевна Упорова⁴, Андрей Анатольевич Золотарев⁵, Дмитрий Александрович Чареев⁶

¹ Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва, Россия; _______oxana.karimova@gmail.com[⊠]

² Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН; Московский государственный университет имени М.В. Ломоносова, Москва, Россия; neremin@mail.ru

³ Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва, Россия; ann_mezhueva@mail.ru

⁴ Институт геологии и геохимии им. академика А.Н. Заварицкого Уральского отделения РАН, Екатеринбург, Россия; nuporova84@yandex.ru

⁵ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия; aazolotarev@gmail.com

⁶ Институт экспериментальной минералогии имени академика Д.С. Коржинского РАН, Черноголовка, Россия; charlic@mail.ru

Аннотация. Высокотемпературными *in-situ* методами (дифференциально-термический анализ, высокотемпературная монокристальная дифракция) изучен фазовый переход, происходящий в структуре соединения PdBi₂. По данным высокотемпературной монокристальной дифракции рассчитаны структуры полиморфных модификаций PdBi₂ при температурах 300, 373, 473, 573 и 637 К. В диапазоне температур от 300 К (27 °C) до 573 К (300 °C) существует низкотемпературная модификация α-PdBi₂, соответствующая минералу фрудиту, которая характеризуется моноклинной сингонией и пространственной группой C2/m (a = 12,726(1)Å, b = 4,2605(4)Å, c = 5,5668(5)Å, β = 102,51(1)°, V = 299,95(5)Å³, Z = 2). При температуре 673К (400 °C) зафиксирована высокотемпературная модификация β -PdBi₂, обладающая тетрагональной сингонией и пространственной группой I4/*mmm* (a = 3,3876(3) Å, c = 13,092(2) Å, V = 150,24(4) Å³, Z = 1), являющаяся аналогом минерала урванцевита. Фазовый переход относится к переходу I типа и является реконструктивным полиморфным превращением с перестройкой I координационной сферы.

Ключевые слова: фрудит, урванцевит, полиморфный переход, висмутид палладия, высокотемпературная дифрактометрия, дифференциально-термический анализ

Для цитирования: Каримова О.В., Еремин Н.Н., Межуева А.А., Упорова Н.С., Золотарев А.А., Чареев Д.А. Структурные преобразования и фазовый переход фрудит (α–PdBi₂) — урванцевит (β–PdBi₂) при высоких температурах // Вестн. Моск. ун-та. Сер. 4. Геология. 2025. № 1. С. 3–9.

STRUCTURAL TRANSFORMATIONS AND PHASE TRANSITION FROODITE (α -PdBi₂) — URVANTSEVITE (β -PdBi₂) AT HIGH TEMPERATURE

Oksana V. Karimova^{1⊠}, Nikolay N. Eremin², Anna A. Mezhueva³, Natalia S. Uporova⁴, Andrey A. Zolotarev⁵, Dmitriy A. Chareev⁶

¹ Institute of Geology of Ore Deposits RAS, Moscow, Russia; oxana.karimova@gmail.com $^{\boxtimes}$

² Institute of Geology of Ore Deposits RAS; Lomonosov Moscow State University, Moscow, Russia; neremin@mail.ru

³ Institute of Geology of Ore Deposits RAS, Moscow, Russia; ann_mezhueva@mail.ru

⁴ Zavaritzkiy Institute of Geology and Geochemistry, UB RAS, Ekaterinburg, Russia; nuporova84@yandex.ru

⁵ Saint-Petersburg State University, Saint-Petersburg, Russia; aazolotarev@gmail.com

⁶ Institute of Experimental Mineralogy RAS, Chernogolovka, Russia; charlic@mail.ru

Abstract. The phase transition in the structure of the PdBi₂ compound was studied using high-temperature *in-situ* methods (differential thermal analysis, high-temperature single-crystal X-ray diffraction). The structures of PdBi₂ polymorphic modifications were refined at temperatures of 300, 373, 473, 573 and 637 K based on the high-temperature single-crystal X-ray diffraction data. A low-temperature modification of α -PdBi₂ is monoclinic, space group C2/*m* (*a*=12.726(1)Å, *b*=4.2605(4)Å, *c*=5.5668(5)Å, β =102.51(1)°, *V*=299.95(5)Å³, *Z*=2). It is stable in the temperature range from 300K (27 °C) to 573K (300 °C) and is corresponding to the mineral froodite. A high-temperature modification of β -PdBi₂ was fixed at the temperature 673K (400 °C). The phase β -PdBi₂ is structural analogue of the mineral urvancevite: it's tetragonal, space group I4/*mmm* (*a*=3.3876(3) Å, *c*=13.092(2) Å, *V*=150.24(4) Å³, *Z*=1). The phase transition refers to a type I and is a reconstructive polymorphic transformation with a rearrangement of the first coordination sphere.

Keywords: froodite, urvantsevite, polymorphic transition, palladium bismuthide, high-temperature X-ray diffraction, differential thermal analysis

For citation: Karimova O.V., Eremin N.N., Mezhueva A.A., Uporova N.S., Zolotarev A.A., Chareev D.A. Structural transformations and phase transition froodite $(\alpha$ -PdBi₂) — urvantsevite $(\beta$ -PdBi₂) at high temperature. Moscow University Geol. Bull. 2025; 1: 3–9. (In Russ.).

Введение. Среди минералов платиновой группы (МПГ) известно два минерала — фрудит и урванцевит, которые имеют в своем составе палладий и висмут в соотношении Pd:Bi = 1:2.

Минерал фрудит (PdBi₂) был открыт в 1973 г. на месторождении Садбери, Канада, в руднике Фруд (Frood), по имени которого он и был назван [Cabri, et al., 1973]. По мнению Ферроу с соавторами фрудит второй по распространенности минерал палладия (после миченерита, PdBiTe) в Cu-Ni сульфидных рудах месторождений района Садбери (Канада) [Cabri, et al., 1976; Farrow, et al., 1997, 2002].

Фрудит описан также в российских месторождениях Норильского рудного поля [Коmarova, et al., 2002, Спиридонов, 2015], и Мончегорского комплекса (Кольский п-ов, Россия) [Deveev, et al., 2002; Гроховская и др., 2003]; а также, например, в Богемии (Чехия) [Cabri, 2002] и др.

Спиридонов (2015) относит фрудит к МПГ поздней пневматолитовой стадии формирования Pd-Pt минерализации Норильского рудного поля. В этих рудах фрудит образует вкрапления в галените и Fe-Cu-Ni-сульфидах размерами от нескольких микрон до 0,5 мм.

Минерал урванцевит (Pd(Bi,Pb)₂) встречается гораздо реже. Впервые он был описан в Cu-Ni сульфидных рудах месторождения Талнах (Норильское рудное поле) Россия [Рудашевский и др., 1976], и, позднее, в месторождении Октябрьское, Норильский р-н, Россия [Cabri, 2002].

Кристаллические структуры минералов фрудита и урванцевита на природных образцах не изучались. Дебаеграммы, полученные при описании минералов, указывают на идентичность структур фрудита и урванцевита структурам двух полиморфных модификаций синтетического соединения PdBi₂. Фрудит обладает структурой низкотемпературной моноклинной модификации с пространственной группой C2/*m*. Урванцевит имеет структуру высокотемпературной модификации с тетрагональной сингонией и пространственной группой I4/*mmm*.

Следует отметить, что химический состав природного урванцевита отличается от идеальной формулы PdBi₂ и характеризуется наличием свинца. Возможно, именно наличие примеси свинца является необходимым условием существования минерала урванцевита в природе. Для того, чтобы определить пределы устойчивости обоих структурных типов в зависимости от изменения состава и температуры, необходимо провести исследование, которое будет включать синтез фаз с разным содержанием примеси свинца и уточнение их структур; высокотемпературные эксперименты, определяющие зависимость структурного состояния фаз с различными составами в ряду PdBi-PdPb от изменения температуры. В данной статье представлены результаты исследования изменения структуры синтетического соединения PdBi₂ с составом крайнего члена ряда без примеси свинца в условиях высоких температур.

Методика. Для выполнения исследования был проведен синтез низкотемпературной модификации а-PdBi₂. Соответствие продукта синтеза искомому соединению определялось методом рентгенофазового анализа. Структурные изменения, происходящие в соединении а-PdBi₂ в условиях высоких температур, изучались методами термического анализа и высокотемпературной монокристальной дифракции.

Экспериментальная часть. Синтез. Синтез α-PdBi₂ общей массой 2 г проводился «сухим» методом в вакуумированных ампулах из кварцевого стекла из элементов, взятых в стехиометрическом соотношении с незначительным (15 мг) избытком висмута. Сначала ампула отжигалась месяц при температуре 550 °С, затем закаливалась в воде, затем месяц отжигалась при 300 °С. Далее ампула вскрывалась, вещество перетиралось, и вновь помещалось в ампулу. Ампула вакуумировалась, заваривалась и отжигалась при 310 °С в течение месяца. Далее ампула охлаждалась в холодной воде и вскрывалась.

Рентгенофазовый анализ. Рентгенофазовый анализ продуктов синтеза выполнен на порошковом дифрактометре PROTO с использованием кобальтового излучения ($K\alpha$ Co 1,7902 Å) при пошаговом режиме съемки (шаг 0,05°) в диапазоне углов 20 от 8 до 90°. Экспозиция в точке составляла 1 с. Обработка полученных данных производилась при помощи программы Jade 6, диагностика — по базе данных PDF-2[Materials Data Inc, 2003].

В результате рентгенофазового анализа установлено, что в процессе синтеза получено соединение, соответствующее низкотемпературной α-модификации PdBi₂, (карточка PDF#89-2027), являющееся аналогом минерала фрудита PdBi₂. Также в образце присутствует 2,5 % металлического висмута (рис. 1).

Дифференциально-термический анализ. Исследование физико-химических процессов и термических характеристик образца α-PdBi₂ выполнено с использованием прибора синхронного термического анализа STA 449 F5 Jupiter (NETZSCH) методами дифференциального термического анализа (ДТА) и термогравиметрии (ТГ) в температурном интервале 30-600 °C в режиме нагрева. Измерения выполнены в тиглях из корунда (масса навесок ~50 мг) при скорости сканирования 10° С/мин. Все исследования проведены в токе (50 мл/мин) аргона, камера предварительно вакуумировалась и промывалась аргоном. Калибровка температуры и чувствительности (определения энтальпии реакций по площади пика) проведена по металлам (In, Sn, Bi, Zn, Al, Ni, Ag, Au) чистотой не ниже 99,99 масс. %. Погрешность в определении температуры составляет ± 1°, ошибка

Рис. 1. Дифрактограмма продуктов синтеза

в определении изменения массы ± 0,05 % (свидетельство о поверке № С-С/22-12-2023/306688935). Обработка данных ДТА-ТГ производилась с использованием программного обеспечения NETZSCH Proteus. По кривым ТГ и ДТГ определялись изменения массы образцов при нагревании и охлаждении; кривая ДТА служила для характеристики наблюдаемых термических эффектов физико-химических процессов и термических характеристик образцов.

На ДТА-кривой нагрева соединения PdBi₂ (рис. 2) зафиксированы два эндотермических пика при температурах 382,6 °С и 480,3 °С, соответственно. Эндотермическая реакция при температуре 382,6 °С (655 К) соответствует температуре полиморфного превращения $\alpha \rightarrow \beta$ соединения PdBi₂. Термический эффект при температуре 480,3 °С связан с конгруэнтным плавлением соединения PdBi₂ или с температурой ликвидус (T_L), выше которой образец находится в жидком состоянии. При плавлении отмечается глубокий эндотермический пик. Зафиксированное значение изменения массы в температурном интервале 30–600 °С не превышает предела погрешности изменения массы (0,05%) встроенных весов прибора.

Энтальпия реакции, вычисленная по площади пика, показывает, что энергия, необходимая для полиморфного превращения α-PdBi₂ → β-PdBi₂, равна –13,1 Дж/г.

Высокотемпературная монокристальная рентгеновская дифракция. Серия высокотемпературных

Рис. 2. Температурная зависимость ДТА образца PdBi₂, полученная в режиме нагрева в атмосфере аргона при скорости сканирования 10° С/мин

рентгеноструктурных экспериментов для соединения PdBi₂ получена на монокристальном дифрактометре Rigaku XtaLab Synergy-S, оснащенном высокостабильным микрофокусным источником изучения PhotonJet-S (МоКа, 50 кВ, 1,0 мА) и высокоскоростным детектором HyPix-6000HE. Получено пять массивов рентгено-дифракционных данных при температурах: 300,0(5) К, 373.0(4) К, 473,0(6) К, 573,0(5) К, 673,0(5) К. Для предотвращения окисления кристалл помещался в капилляр из кварцевого стекла. Обработка массивов дифракционных данных, введение поправок на фактор Лоренца и эффект поляризации, уточнение параметров элементарной ячейки проведены с помощью программного пакета CrysAlis [Agilent, 2012]. Эмпирическая поправка на

Рис. 3. Кристаллическая структура α-PdBi₂: *a* — координационный полиэдр палладия; *б* — фрагмент слоя из полиэдров палладия в проекции, перпендикулярной параметру а; *в* — слои из полиэдров PdBi₇, проекция вдоль параметра b

Рис. 4. Кристаллическая структура β-PdBi₂: *a* — координационный полиэдр палладия; *б* — фрагмент слоя из полиэдров палладия, проекция перпендикулярная параметру а; *в* — слои из полиэдров PdBi₈, проекция вдоль параметра b

поглощение введена с помощью программы SCALE3 ABSPACK [Agilent, 2012].

Кристаллические структуры полиморфных модификаций PdBi₂ при разных температурах были решены прямыми методами и уточнены в анизотропном приближении с помощью программ SHELX [Sheldrick 2008, 2015] в рамках программной среды WinGX [Farrugia, 1999]. В табл. 1 приведены характеристики рентгено-дифракционных экспериментов, результаты решения и уточнения структур. В табл. 2 представлены кристаллографические характеристики полиморфных модификаций PdBi₂ при разных температурах.

Установлено, что в диапазоне температур от 300К (27 °C) до 573 К (300 °C) существует низкотемпературная модификация α-PdBi₂, которая характеризуется моноклинной сингонией и пространственной группой C2/*m*. При дальнейшем нагреве происходит фазовый переход, и при температуре 673К (400 °C) зафиксирована высокотемпературная модификация β-PdBi₂, обладающая тетрагональной сингонией и пространственной группой I4/*mmm*.

Обсуждение результатов. В структуре низкотемпературной моноклинной модификации α-PdBi₂ атомы висмута занимают две кристаллографически независимые 4*i* Уайкофф позиции с точечной симметрией *m*. Атомы палладия заселяют одну позицию 4*i* Уайкофф (табл. 3).

Атомы палладия имеют семь ближайших атомов висмута в структуре α-PdBi₂. Координационный полиэдр вокруг атомов Pd — одношапочный октаэдр (рис. 3, *a*). Расстояния Pd-Bi изменяются от 2,840 Å до 3,060 Å (табл. 4). Семивершинники PdBi₇ соединяются общими гранями в слои-стенки, простирающиеся параллельно плоскости (011) структуры (рис. 3, *б*). Слои чередуются вдоль параметра *а* структуры и объединяются с помощью связей Bi-Bi (рис. 3, *в*).

В структуре высокотемпературной тетрагональной модификации β-PdBi₂ атомы висмута занимают одну кристаллографическую позицию — 4e Уайкофф, с точечной симметрией 4*mm*. Атомы палладия располагаются в позиции Уайкофф — 2b с более высокой точечной симметрией 4/*mmm* (табл. 5). В этой модификации атомы палладия имеют восемь ближайших соседей. Координационный полиэдр тетрагональная призма. Все восемь Pd-Bi расстояний одинаковые и равны 2,975 Å (табл. 6; рис. 4, *a*).

Общий мотив структуры сохраняется и в высокотемпературной модификации: полиэдры $PdBi_8$ объединяются общими гранями и ребрами в слои (рис. 4, δ). Слои простираются параллельно плоскости структуры (110) и чередуются вдоль длинной

Характеристики рентгено-дифракционных экспериментов, параметры решения и уточнения структур полиморфных модификаций PdBi₂

Дифрактометр	XtaLAB Synergy Hybrid Pixel Array Detector								
Излучение	Μο Κα (λ=0,7107 Å)								
Температура, К	300	300 373 473 573							
θ _{max} , °	27,4	26,5	26,5	26,5	26,4				
Пределы <i>h, k, l,</i>		$-4 \le h \le 4$ $-4 \le k \le 3$ $-16 \le l \le 16$							
Число рефлексов: измеренных/ независимых (N_1)/ с I > 4 σ (I) (N_2)	1423/ 387/ 319	1379/ 354/ 300	1400/ 358/ 288	1408/ 360/ 270	645/ 67/ 59				
	0,0764/ 0,0614 1,13	0,0590/ 0,0706 1,08	0,0558/ 0,0721 1,08	0,0630/ 0,0880 1,07	0,0500/ 0,0461 1,10				

Таблица 2

Кристаллографические характеристики полиморфных модификаций PdBi_2

Минерал/фаза	Сингония, пр. группа	а	b	с	β	V	Z	<i>Т</i> , К
Фрудит α-PdBi ₂	Моноклинная С2/т	12,726(1)	4,2605(4)	5,5668(5)	102,51(1)	299,95(5)	2	300
		12,759(1)	4,2696(4)	5,6758(6)	102,41(1)	301,98(6)	2	373
		12,792(2)	4,2766(4)	5,6819(6)	102,35(1)		2	473
		12,861(2)	4,2861(5)	5,6965(8)	102,51(2)	306,55(8)	2	573
Урванцевит β-PdBi ₂	Тетрагональная I4/ <i>ттт</i>	3,3876(3)	3,3876(3)	13,092(2)		150,24(4)	1	673

Таблица 3

Координаты и коэффициенты тепловых колебаний атомов в структуре α-PdBi₂ в диапазоне температур от 300 до 573 К

Атом	Позиция Уайкофф	x	у	z	U^{11}	U ²²	U ³³	U ²³	U^{13}	U^{12}	$U_{ m eq}$	<i>Т</i> , К
		0,1564(1)	1,0	0,8158(2)	0,020(1)	0,0171(9)	0,0093(8)	0	0,0038(6)	0	0,0154(6)	300
D'1		0,1563(1)	1,0	0,8158(2)	0,023(1)	0,0201(9)	0,0137(9)	0	0,0057(7)	0	0,018(7)	373
B11	41	0,1560(1)	1,0	0,8156(2)	0,031(1)	0,0264(9)	0,0204(8)	0	0,0064(6)	0	0,0258(6)	473
		0,1565(2)	1,0	0,8151(3)	0,044(1)	0,034(1)	0,0276(9)	0	0,0099(8)	0	0,0347(7)	573
		0,4264(1)	0	0,7068(2)	0,0165(1)	0,0193(9)	0,0122(8)	0	0,0020(6)	0	0,016(6)	300
D:2		0,4262(1)	0	0,7070(2)	0,0176(1)	0,0228(9)	0,0175(9)	0	0,0028(7)	0	0,0195(7)	373
B12	41	0,4259(1)	0	0,7070(2)	0,026(1)	0,0301(9)	0,0247(9)	0	0,0037(7)	0	0,0272(7)	473
		0,4260(2)	0	0,7066(3)	0,038(1)	0,038(1)	0,032(1)	0	0,006(8)	0	0,0363(7)	573
Pd 4		0,2759(3)	0,5	0,6709(5)	0,028(2)	0,014(1)	0,009(1)	0	0,004(1)	0	0,016(7)	300
	4 <i>i</i>	0,2759(3)	0,5	0,6714(5)	0,028(2)	0,017(1)	0,014(2)	0	0,004(1)	0	0,0197(9)	373
		0,2755(3)	0,5	0,6712(5)	0,041(2)	0,022(1)	0,019(1)	0	0,004(1)	0	0,0277(9)	473
		0,2761(3)	0,5	0,6719(6)	0,055(3)	0,030(2)	0,026(2)	0	0,009(2)	0	0,037(1)	573

Таблица 4

Межатомные расстояния в структуре модификации α-PdBi₂ в диапазоне температур 300–573 К

Тип связи	Длина связи, Å	Температура, К	Тип связи	Длина связи, Å	Температура, К	Тип связи	Длина связи, Å	Температура, К
Pd-Bi1	2,8401(2) x2	300		2,8497(3)	300	Pd-Bi1	3,0622(3)	300
	2,846(2) x2	373	ו:ת בת	2,853(3)	373		3,069(3)	373
	2,849(2) x2	473	Pa-B11	2,860(3)	473		3,075(3)	473
	2,858(3) x2	573		2,863(4)	573		3,080(4)	573
Pd-Bi2	2,8425(2) x2	300	Pd-Bi2	2,9700(3)	300			
	2,847(3) x2	373		2,981(3)	373]		
	2,854(3) x2	473		2,982(3)	473			
	2,860(3) x2	573		2,996(4)	573			

Таблица 1

 U^{22} U^{12} U^{13} U^{11} U^{33} U^{23} Позиция Уайкофф Атом $U_{\rm eq}$ х v zBi 0,5 0,5 0,6348(2) 0,057(1) 0,057(1) 0,059(2) 0 0 0 0,057(1) 4e0 0

Координаты атомов в структуре β-PdBi₂ при температуре 673 К

Таблица 7

Таблица 5

Pd 2b0 0,0628(2)0,0628(2)0,054(3)0 0 0 0,059(2)

Таблица б

Межатомные расстояния в структуре модификации β-PdBi₂

Сравнительная характеристика связей Pd-Bi в полиморфных модификациях соединения PdBi₂

Тип связи	Длина связи, Å	Температура, К	Типы взаимодействия и длины связей Pd-Pd в α-PdBi ₂ (300K) Å Внутри слоя Между слоями		Типы взаимодейст	вия и длины связей Іві (673К) Å
Pd-Bi1 x8	2,975(1)	673			Внутри слоя	Между слоями
			2,863; 4,260; 4,466	6,090, 6,400; 6,710	3,388, 4,790	6,970

оси ячейки (с) с пустым межслоевым пространством (рис. 4, в).

Фазовый переход происходит по реконструктивному механизму. В процессе фазового перехода атомы палладия и висмута смещаются из своих позиций с образованием более высоко симметричных позиций. Две кристаллографические правильные системы точек, которые занимают атомы палладия в низкотемпературной модификации α-PdBi₂, объединяются в высокотемпературной β-PdBi₂ в одну. Образуется дополнительная связь Pd-Bi. Повышается координационное число полиэдров палладия.

В структуре низкотемпературной модификации α-PdBi₂ расстояния между атомами палладия внутри слоя имеют значения от 2,86 до 5,56 Å (табл. 7), а между слоями — в пределах 6,40-6,71 А. В структуре высокотемпературной модификации β-PdBi₂ расстояния Pd-Pd внутри слоя равны 3,388 и 4,790 Å, а между слоями 6,97 Å. В результате фазового перехода α -PdBi₂ $\rightarrow \beta$ -PdBi₂ минимальные расстояния Pd-Pd увеличиваются внутри слоя на 17,5%, а между

СПИСОК ЛИТЕРАТУРЫ

Бюргер М.Дж. Фазовые переходы // Кристаллография. 1971. Т. 16. С. 1084-1096.

Гроховская Т.Л., Бакаев Г.Ф., Шолохнев В.В. и др. Рудная платинометальная минерализация в расслоенном Мончегорском магматическом комплексе (Кольский п-ов, Россия) // Геология рудных месторождений. 2003. Т. 45, № 4. C. 329–352.

Рудашевский Н.С., Макаров В.Н., Медведева Е.М. и др. Урванцевит, Pd(Bi,Pb)₂, новый минерал в системе Pd-Bi-Sb // Записки ВМО. 1976. Т. 105. С. 704-709.

Спиридонов Э.М., Кулагов Э.А., Серова А.А. и др. Генетическая минералогия Pd, Pt, Au, Ag, Rh в Норильских сульфидных рудах // Геология рудных месторождений. 2015. T. 57, № 5. C. 445-476.

Филатов С.К., Пауфлер П. Систематика полиморфных превращений кристаллов, обобщенная на основе критериев Бюргера // Записки РМО. 2019. Т. 148, № 5. С. 1–23.

Agilent. CrysAlis P.R.O. Agilent Technologies UK Ltd — Yarnton, Oxfordshire, England. 2012.

Dedeev A.V., Khashkovskaya T.N., Galkin A.S. PGE Mineralization of the Monchegorsk Layered Mafic-Ultramafic Intrusion of the Kola Peninsula // The Geology, Geochemistry, слоями — на 14,8 %. Наибольшая перестройка происходит внутри слоя Pd-Bi полиэдров.

В результате проведенных *in-situ* высокотемпературных экспериментов изучен полиморфный переход фрудит, α -PdBi₂ \rightarrow урванцевит, β -PdBi₂ (на синтетических аналогах). При полиморфном превращении реконструктивные преобразования касаются только первой и не затрагивают вторую координационную сферу. Общий мотив структуры сохраняется. Согласно классификации полиморфизма по М.Дж. Бюргеру [Бюргер, 1971], и расширенной систематике полиморфных превращений С.К. Филатова и П. Пауфлера [2019] фазовый переход относится к переходу I типа и является реконструктивным полиморфным превращением с перестройкой I координационной сферы. Установлена температура полиморфного перехода α -PdBi₂- β -PdBi₂ — 382 °C, и температура плавления β -PdBi₂ — 480 °C.

Финансирование. Работа выполнена при финансовой поддержке Российского научного фонда, грант № 23-27-00470.

Mineralogy and Mineral Beneficiation of Platinum-Group Elements / Ed. by L.J. Cabri. 2002. CIM Special Volume 54. P. 569-578.

Cabri L.J., Harris D.C., Gait R.I. Michenerite (PdBiTe) redefined and froodite (PdBi₂) confirmed from the Sudbury area // Canadian Mineralogist. 1973. Vol. 11. P. 903-912.

Cabri L.J., Laflamme J.H.G. The mineralogy of the platinum group elements from some Cu-Ni deposits in the Sudbury area, Ontario // Economic Geology. 1976. Vol. 71. P. 1159-1195.

Cabri L.J. The Platinum-Group Minerals // The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements / Ed. by L.J. Cabri. 2002. CIM Special Volume 54. P. 13-130.

Farrow C.E.G., Watkinson D.H. Diversity of precious-metal mineralization in footwall Cu-Ni-PGE deposits, Sudbury, Ontario: Implications for hydrothermal models of formation // Canadian Mineralogist. 1997. Vol. 35. P. 817-839.

Farrow C.E.G., Lightfoot P.C. Sudbury PGE Revisited: Toward an Integrated Model / The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group

Elements / Ed. by L.J. Cabri. 2002. CIM Special Volume 54. P. 275–298.

Farrugia L.J. WinGX Program System // J. Appl. Cryst. 1999. Vol. 32. P. 837.

Komarova M.Z., Kozyrev S.M., Simonov O.N., Lulko V.A. The PGE Mineralization of Disseminated Sulphide Ores of the Noril'sk-Taimyr Region // The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements / Ed. by L.J. Cabri. 2002. CIM Special Volume 54. P. 547–568.

Sheldrick G.M. A short history of SHELX // Acta Crystallographica Section A: Foundations of Crystallography. 2008. Vol. 64(1). P. 112–122.

Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Crystallographica. 2015. Vol. 71. P. 3–8.

Статья поступила в редакцию 04.10.2024, одобрена после рецензирования 30.10.2024, принята к публикации 28.02.2025