УДК 551.76/551.77

doi: 10.55959/MSU0579-9406-4-2024-63-6-51-60

ПАЛЕОКЛИМАТИЧЕСКИЕ И ПАЛЕОБАТИМЕТРИЧЕСКИЕ РЕКОНСТРУКЦИИ УСЛОВИЙ ФОРМИРОВАНИЯ МЕЗО-КАЙНОЗОЙСКИХ ОТЛОЖЕНИЙ ЧУКОТСКОГО МОРЯ

Руслан Рустемович Габдуллин

Московский государственный университет имени М.В. Ломоносова, Москва, Россия; gabdullin@geokhi.ru $^{\boxtimes}$, IRID: 427729, https://orcid.org/0000-0001-8296-7191

Аннотация. Приведена хронолитостратиграфическая характеристика мезо-кайнозойских отложений Чукотского моря, проведен их формационный анализ и на основе комплекса данных проведены палео-климатические, палеогалинометрические и палеобатиметрические реконструкции для мезо-кайнозойских отложений акватории Чукотского моря.

Ключевые слова: палеоклиматология, палеобатиметрия, соленость, мезозой, кайнозой, Чукотское море

Для цитирования: Габдуллин Р.Р. Палеоклиматические и палеобатиметрические реконструкции условий формирования мезо-кайнозойских отложений Чукотского моря // Вестн. Моск. ун-та. Сер. 4. Геология. 2024. № 6. С. 51–60.

PALEOCLIMATIC AND PALEOBATIMETRIC RECONSTRUCTIONS OF THE CONDITIONS OF FORMATION OF MESO-CENOZOIC SEDIMENTS OF THE CHUKCHI SEA

Ruslan R. Gabdullin[™]

Lomonosov Moscow State University, Moscow, Russia; gabdullin@geokhi.ru $^{\boxtimes}$

Abstract. Chronolithostratigraphic characteristics of Meso-Cenozoic sediments of the Sea of Okhotsk are given, their formation analysis is carried out and paleoclimatic, paleohalinometric and paleobatimetric reconstructions for Meso-Cenozoic sediments of the Chukchi Sea are carried out on the basis of a set of data.

Keywords: paleoclimatology, paleobatimetry, salinity, Mesozoic, Cenozoic, Okhotsk Sea

For citation: Gabdullin R.R. Paleoclimatic and paleobatimetric reconstructions of the conditions of formation of Meso-Cenozoic sediments of the Chukchi Sea. *Moscow University Geol. Bull.* 2024; 6: 51–60. (In Russ.).

Введение. Арктический океан на настоящее время является одним из наименее изученных в мире океанов. Именно здесь вероятны значительные научные открытия ввиду наличия ряда нерешенных общих проблем, среди которых есть палеоклиматическая, палеогеографическая и палеотектоническая история всего Арктического океана, что в свою очередь необходимо для корректного прогноза месторождений углеводородов.

Материалы и методы исследования. Методы, использованные в исследовании, включали анализ опубликованных источников, метод интерполяции, метод циклографической корреляции, методы палеоклиматической и палеогеографической интерпретации палеонтологических, литологических и геохимических данных.

Исследование состояло из следующих подходов: 1) создание базы данных геохимических и седиментологических параметров для мезо-кайнозойских отложений Чукотского моря на основе опубликованных и архивных данных; 2) формационный анализ седиментологических последовательностей;

3) комплексный анализ базы данных и выявление карактерных особенностей седиментологических систем района исследования с акцентом на вариации климата, палеотемпературы и палеосолености; 4) сравнительно-стратиграфический анализ и корреляция между глобальными и региональными палеособытиями; 5) построение сводных кривых вариации палеоглубин, палеосолености и палеотемпературы.

Результаты исследования и их обсуждение. Основные результаты исследования изложены в диссертации автора [Габдуллин, 2023] и включают литолого-стратиграфическую, палеобатиметрическую, палеотемпературную и палеогалинометрическую характеристику. При оценки палеотемператур использовались данные по среднегодовым температурам — МАТ и температурам поверхностных вод — SST, подробнее об этом изложено в работе [Габдуллин, 2023].

Литолого-стратиграфическая характеристика. В качестве стратиграфической основы для исследования взята геологическая карта: Остров Врангеля. R 1, 2. [Объяснительная..., 2014]. Приведена характеристика зоны Прибрежной моноклинали, Новосибирско-Чукотской складчатой системы, Лонговского поперечного поднятия и Южно-Чукотского прогиба, Врангелевского поднятия, Врангелевско-Геральдской зоны горстов и грабенов, Геральдского поднятия, Северо-Чукотского прогиба и вала Барроу.

В разрезе Новосибирско-Чукотской складчатой системы выделяется амгуэмская свита (IX), представленная нижне-среднетриасовыми песчаниками, алевролитами, глинистыми сланцами (1200–1500 м) и верхнетриасовая гавайская толща (IV), объединяющая аргиллиты, глинистые сланцы, алевролиты, песчаники (2000 м). Триасовые осадки отнесены автором к умеренно-карбонатной морской формации по [Синицын, 1980] и карбонатно-терригенной флишевой формации по тектоническому кодексу (далее — ТК) [Тектонический..., 2016; рис. 1].

Среднепалеозойско-триасовые отложения зоны Прибрежной моноклинали и Южно-Чукотского прогиба, Врангелевско-Геральдской зоны горстов и грабенов и Геральдского поднятия (рис. 1) представлены карбонатно-терригенными отложениями мощностью 6000–7000 м. Среднепалеозойско-нижнемеловые отложения Лонговского поперечного поднятия представлены карбонатно-глинистыми отложениями мощностью 8000–9000 м. Эти стратоны сопоставлены автором с умеренно-карбонатной морской формацией по [Синицын, 1980] и карбонатно-терригенной флишевой формацией по ТК.

Верхнетриасовые образования *Врангелевского* поднятия представлены песчаниками, алевролитами, глинистыми сланцами (900 м) мымлеренецкой серии (IX). Они отнесены автором к бескарбонатной морской формации по [Синицын, 1980] и к терригенной (глинисто-алевритовой) контуритовой формации по ТК (рис. 2).

Среднепалеозойско-нижнемеловые нерасчлененные отложения Северо-Чукотского прогиба и вала Барроу отвечают сейсмоподкомплексу Ч-II-Ч-III (I), объединяющие аргиллиты, алевролиты, песчаники, известняки мощностью 1000–1500 м. Они сопоставлены автором с бескарбонатной морской формацией по [Синицын, 1980] и карбонатно-терригенной флишевой формацией по ТК (рис. 2).

После перерыва, вызванного складчатыми деформациями и внедрением диоритов и гранитов тауреранского комплекса, разрез наращивают нерасчлененные отложения баррема-альба, отвечающие сейсмокомплексу Ч-III-Ч-IV (I, III, V-VIII) и включающие в себя молассовые континтентальные аргиллиты, алевролиты, песчаники, туфоконгломераты, линзы каменного угля (100–4000 м), распространенные везде, кроме зоны Врангелевского поднятия. Эти образования отнесены автором к мезомиктовой угленосной формации по и континентальной угленосной молассовой формации по ТК (рис. 3 и 4). Они

являются эквивалентом нижне-брукских отложений [Виноградов, 2007].

Следующим стратоном являются нерасчлененные верхнемеловые континтентальные отложения сейсмокомплекса Ч-IV-Ч-VI (I, III, VI-VIII), объединяющие пески, песчаники, алевриты, алевролиты, глины, аргиллиты, галечники, конгломераты (1000–1100 м). Эти образования отнесены автором к мезомиктовой формации по [Синицын, 1980] и песчано-глинистой континентальной формации по ТК.

Выше по разрезу в зоне Прибрежной моноклинали (рис. 3) залегают палеоген-миоценовые объединенные образования тыноокеанской свиты, пестрой толщи, вивианитовой свиты и вельмайской свиты (VII), включающие в себя глины, пестроцветные галечники и гравийники, суглинки, пески, алевриты, прослои торфа (90-100 м). Они отнесены автором к терригенной пестроцветной формации по ТК и мезомиктовой формации по [Синицын, 1980]. Возрастным аналогом этого стратона являются нерасчлененные отложения сейсмокомплекса Ч-V-Ч-VII (I-IV, VI, VII), включающие в себя пески с гравием, алевриты, глины, галечники (300–400 м), распространенные во всех оставшихся вышеперечисленных зонах, кроме области Геральдского поднятия. Эти образования отнесены автором к песчано-глинистой континентальной формации по ТК и мезомиктовой формации по [Синицын, 1980].

Палеобатиметрические условия. Для описанной выше стратиграфической основы для акватории Чукотского моря автором была построена палеогеографическая кривая (рис. 5).

В триасе скорее всего палеоглубины бассейна составляли около 200 м, в юрское и меловое время территория была приподнята (сначала представляла собой область денудации до баррема, а с баррема имело место континентальное осадконакопление с формированием осадков мезомиктовой угленосной формации). В кайнозойское время палеоглубины составляли около 50 м.

Исключением является существование области денудации в ладинском веке на месте Новосибирско-Чукотской складчатой системы и продолжение существования палеоглубин в 200 м в юрско-готеривское время в зоне Лонговского поперечного поднятия и Южно-Чукотского прогиба.

Палеосоленость. Автором определены вариации солености и построена палеогалинометрическая кривая (рис. 5). Этапы существования бассейнов с нормальной соленостью приходятся на триас-готеривское и неоген-четвертичное время. Это подтверждается находками радиолярий в триасе на востоке Корякского Нагорья [Пчелина, 2009], находками аммонитов в инде-анизии и карние-норие [Объяснительная записка..., 2014] и породами умеренно карбонатной морской формации.

В палеогеновое время сначала существовал существенно опресненный бассейн, соленость в котором постепенно увеличивалась.

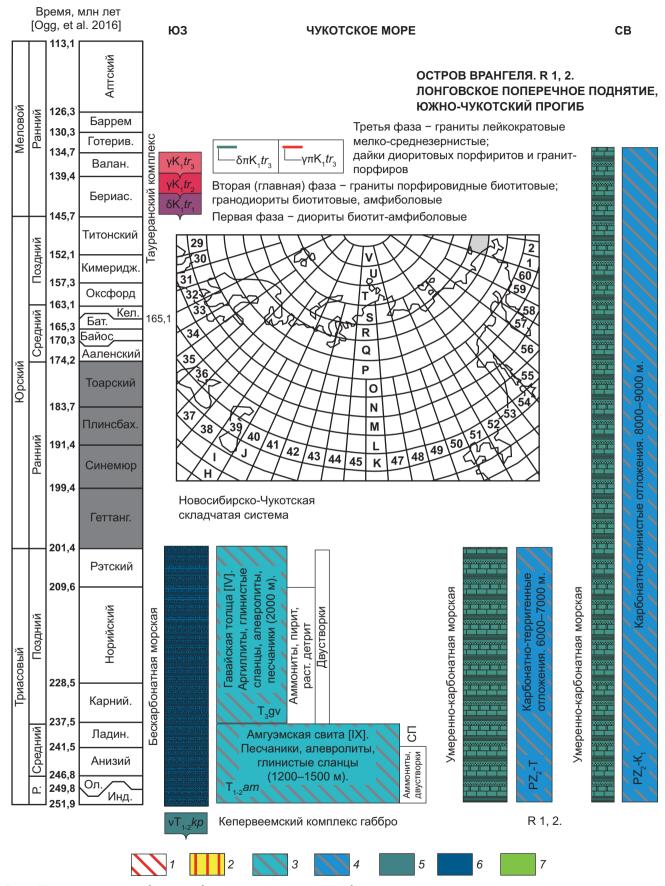


Рис. 1. Хронолитостратиграфическая, формационная и палеогеографическая характеристика триасово-нижнемеловых отложений акватории Восточно-Охотского моря: 1 — песчано-глинистая континентальная формация; 2 — континентальная угленосная молассовая формация; 3 — терригенная (глинисто-алевритовая) контуритовая формация; 4 — карбонатно-терригенная флишевая формация; 5 — умеренно-карбонатная морская формация; 6 — бескарбонатная морская формация ; 7 — мезомиктовая угленосная формация

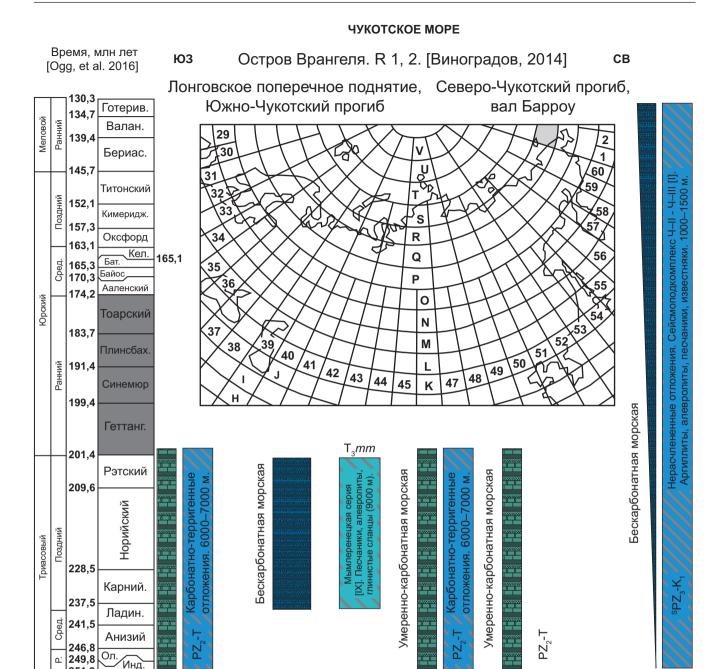


Рис. 2. Хронолитостратиграфическая, формационная и палеогеографическая характеристика триасово-нижнемеловых отложений акватории Чукотского моря. Среднепалеозойско-триасовые отложения в нижней части схемы (слева направо): зоны Прибрежной моноклинали и Южно-Чукотского прогиба, Врангелевско-Геральдской зоны горстов и грабенов и Геральдского поднятия

R 1, 2.

Палеоклиматические условия. Для данного района имеются качественные [Fot'yanova, Serova, 1994] (климатический тренд был приведен автором к абсолютным температурным значениям) и количественные оценки климатических условий для мелапалеогена (в основном это величины среднегодовых температур — MAT, рассчитанные методом CLAMPанализа [Буданцев, 2009; Herman, Spicer, 2010; Golovneva, 2000; Herman, et al., 2016], определенные по морским палиноморфам [Волкова, 2011], по данным палинологии [Zakharov, et al., 2011]), единичные — для триаса [Гольберт и др., 1977].

По анализу состава фитоценозов имеются качественные и количественные оценки вариаций климата [Гриненко и др., 1997; Анисимов др., 2012] для кайнозойского времени (рис. 5 и 6).

Климат саканьинского и тимкинского горизонтов (даний, ранний зеландий) определен как теплый, влажный, возможно, близкий субтропическому с величиной МАТ в 19,7°С, а киенгского горизонта (поздний зеландий, танет) — как теплый и влажный, но более прохладный. Климат кенгейского времени (ранний ипр) теплоумеренный с возможными элементами субтропиков с величиной МАТ в 19,7°С.

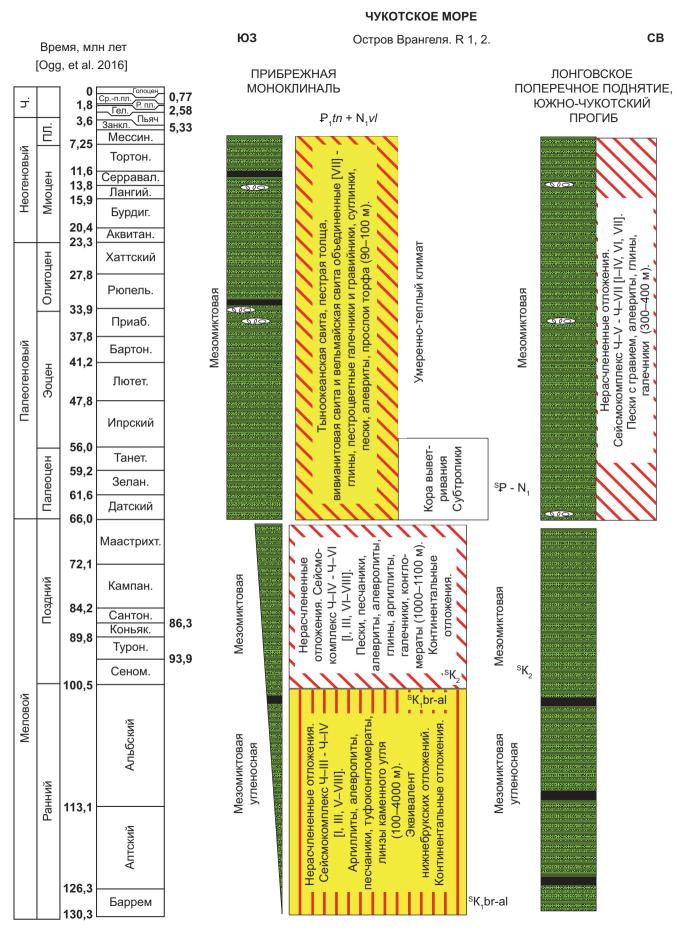


Рис. 3. Хронолитостратиграфическая, формационная и палеогеографическая характеристика нижнемеловых-современных отложений юго-западной части акватории Чукотского моря

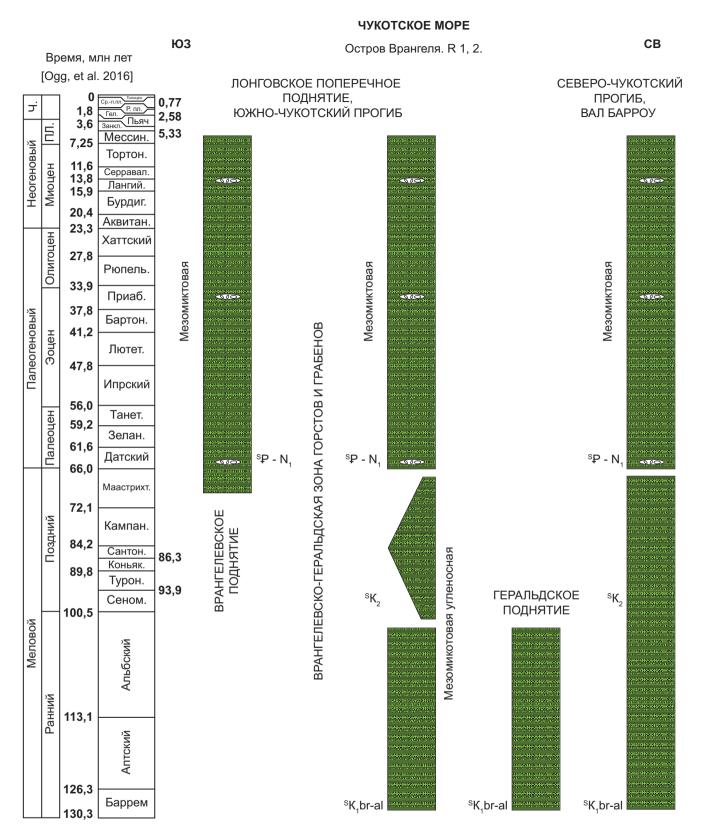


Рис. 4. Хронолитостратиграфическая и формационная характеристика нижнемеловых-современных отложений центральной и северо-восточной части акватории Чукотского моря

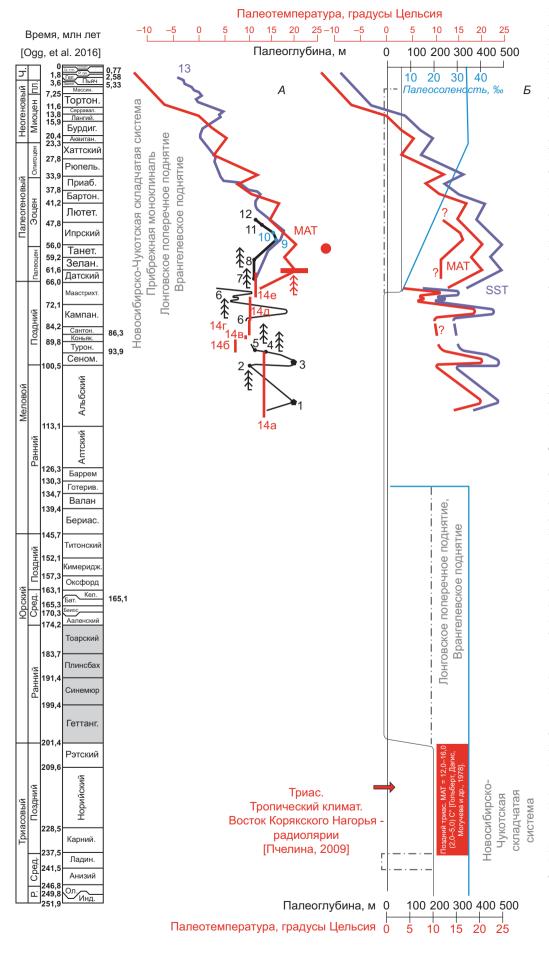


Рис. 5. Палеогеографическая характеристика геологической истории развития бассейнов акватории Охотского моря в мезо-кайнозое. Палеотемпературные кривые, источники: 1 — МАТ (среднегодовая температура), палинология, Корякское нагорье, 60-65° с.ш. [Zakharov, et al., 2011]; 2 — MAT (CLAMP), Корякское нагорье Новосибирские о-ва [Herman, Spicer, 1996]; 3 — MAT, палинология, Корякское нагорье, 60-65° с.ш. [Zakharov, et al., 2011]; 4 — MAT (CLAMP), 72° с.ш., п-ов Камчатка [Herman, Spicer, 1996]; 5 — MAT (CLAMP), 72°, п-ов Камчатка [Herman, Spicer, 1996]; 6 — MAT (CLAMP) 70-82° с.ш., Корякское нагорье и Аляска [Herman, et al., 2016]; 7 — MAT (CLAMP) 62° Корякское нагорье [Буданцев, 2009]; 8 — МАТ (CLAMP), о-в Айон, 69-70° с.ш. [Golovneva, 2000]; 9 и 10 — МАТ, морские палиноморфы, о-в Айон, 69° с.ш. [Волкова, 2011]; 11, 12 — МАТ (CLAMP), п-ов Камчатка, 72° с.ш. [Буданцев, 2009]; 13 — климатический тренд (приведен автором к температурным значениям), Корякское нагорье, 55-60° с.ш. [Fot'yanova, Serova, 1994]; 14 [Golovneva, 2000]: a — MAT (CLAMP) 13,0, гребенкинская флора (этап), 76° с.ш.; 6 — МАТ (CLAMP) 7,0, пенжинская флора (этап), 76° с.ш.; в — MAT (CLAMP) 9,5, кайваямская флора (этап), 76° с.ш.; гид — MAT (CLAMP) 10,0, ropнореченскская флора (этап), 76° с.ш.; е — МАТ (СLAMР) 11,0, рарыткинскская флора (этап), 76° с.ш. SST — температура поверхностных вод

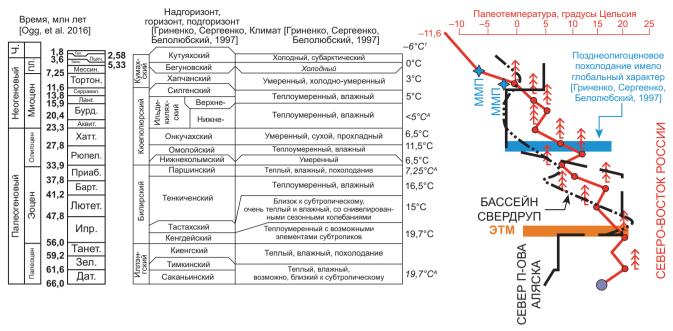


Рис. 6. Климатическая характеристика кайнозойских отложений района Охотского моря [по Гриненко, Сергеенко, Белолюбский, 1997]. ЭТМ — эоценовый термальный максимум, ММП — многолетнемерзлые породы

Климат тастахского времени (средний ипр) близок к субтропическому, очень теплый и влажный, со снивелированными сезонными колебаниями со значением MAT в 15 °C. В тенкиченское время (поздний ипр-ранний приабон) климат был теплоумеренный, влажный со значением МАТ в 16,5 °C. В паршинское время (поздний приабон) значения МАТ во время похолодания падают до 7,25 °C, а сам климат оценивается как теплый и влажный. В нижнеколымское время (ранний рюпель) климат умеренный со значениями MAT в 6,5 °C, а в омолойское время (поздний рюпель) — теплоумеренный, влажный с величинами МАТ до в 11,5°С. Умеренный, сухой, прохладный тип климата господствует в онкучахское (хаттское) время со значением МАТ в 6,5 °C. В ильдикиляхское и силгенское (аквитанско-серравальское) время величина МАТ составляла около 5°C. В хапчанское время (тортон и мессиний) климат был холодный и умеренно-холодный со значениями МАТ до 5°C. В бегуновское (позднеплиоценовое) время климат был холодный с нулевым значением МАТ. В современное время климат охарктеризован как холодный субарктический с величиной МАТ в -6°C. Смена климата четко фиксируется по смене фитоценозов (рис. 7).

Следы глобальных климатических событий — эоценового термального максимума и позднеолигоценового похолодания [Гриненко и др., 1997] установлены в разрезах данного региона.

Для позднего триаса значения МАТ составляют $12,0-16,0\,^{\circ}$ С с амплитудой вариации $(2,0-5,0\,^{\circ}$ С) [Гольберт и др., 1977]; по радиоляриям определено [Пчелина, 2009], что господствовал тропический тип климата.

Заключение. Обобщив большой массив данных для мел-кайнозойского интервала геологической

истории, автор построил компилятивную палеотемпературную кривую (рис. 5). В начале альба и сеномана, в начале позднего кампана начинается потепление климата, значения МАТ достигают 20°C, но потом снижаются до 10°C. В это время накапливаются отложения мезомиктовой угленосной формации. В турон-сантонское время значения МАТ предположительно составляли 10–15°C, вновь происходит потепление. В начале маастрихта величины МАТ составляют около 7°C, затем имеет место потепление до 10-12°C и вновь похолодание в конце маастрихта до 5°C. В датском и зеландском веках потепление климата с 10 до 15°C с похолоданием в танете до 17°C, и далее потепление в ипре до 20°C и похолодание в начале лютета до 15°C. В бартоне климат становится более холодным, значения температуры падают до 7°C, затем происходит потепление до 10°C в рюпеле. Затем вновь температура снижается до 3°C на рюпель-хаттском рубеже с потепелением до 3°C в аквитане. Далее, с конца бурдигала значения МАТ становятся отрицательными вплоть до современного времени — господствует холодный субарктический климат со значениями МАТ около -6 °C. Тенденция к постепенному снижению температуры фиксируется с палеоцен-эоценового рубежа. Значения SST оцениваются автором выше величин МАТ примерно на 5°С.

Этапы существования бассейнов с нормальной соленостью приходятся на триас-готеривское и неоген-четвертичное время. В палеогеновое время сначала существовал существенно опресненный бассейн, соленость в котором постепенно увеличивалась.

В триасе скорее всего палеоглубины бассейна составляли около 200 м, в юрское и меловое время территория была приподнята (сначала представляла

Надгоризонт, горизонт, подгороизонт [Гриненко, Сергеенко, Белолюбский, 1997] Xai

Характеристика пелеофитоценоза [Гриненко, Сергеенко, Белолюбский, 1997]

йи	Кутуяхский	ž	Лесотундровые ландшафты, чередующиеся с лиственно-березовыми с примесью ели лесами
эхск	Бегуновский	Ϋ́Ν	Лиственно-березовые и елово-лиственные с участием сосны леса; местами - открытые травянистые ассоциации и, возможно, ценозы, близкие к тундровым
γλ	Хапчанский	ZŽ	Смещанные сосново-мелколиственные с незначительной примесью листопадных широколиственны
I	Силгенский	žž	Широколиственно-сосново-мелколиственные леса с ограниченным участием травянистых ассоциации
ŇI	жий Верхне-	-энх	Листопадные широколиственные и хвойно-лиственные леса. Резкое увеличение количества термофильных покрытосеменных, в частности бука
рски	ganN oxrn J	Нижне-	Сосново-березовые леса с участием листопадных широколиственных. Увеличилась роль таксодиевых, буковых, других теплолюбивых покрытосеменных
жин.	Онкучахский	ćий	Смешанные сосново-березовые леса с небольшим участием листопадных широколиственных
Кюеі	Омолойский	сий	Широколиственные листопадные и сосново-березовые леса с участием таксодиевых и редко вечнозеленых
	Нижнеколымский	мский	Смешанные сосново-березовые леса с примесью широколиственных листопадных
	Паршинский	ий	Смешанные широко- и мелколиственно-сосновые, березово-сосновые и широколиственные с участием таксодиевых леса (Pinus, Picea, Betula, Alnus)
йих	ŀ	,	Широколиственные листопадные с примесью вечнозеленых леса, сосуществующие с хвойными и смешанными лесами
имрсі	І енкиченскии	KAN	/ Широколиственные леса из листопадных и вечнозеленых пород
ид	Тастахский	ž	
	Кенгдейский	'n	Хвойно-широколиственные леса (таксодиевые, сосновые, листопадные и вечнозеленые)
кий	Киенгский	ž	Хвойные сосново-таксодиевые и смешанные леса из листопадных и вечнозеленых
лэнсс	Тимкинский	ĭĸ	Хвойно-широколиственные леса с участием субтропических вечнозеленых
пN	Саканьинский	жий	Хвойные (сосново-таксодиевые) и листопадные с вечнозелеными растениями леса, в которых были широко распространены папоротники

Рис. 7. Характеристика палеофитоценозов для кайнозоя района Охотского моря [по Гриненко, Сергеенко, Белолюбский, 1997]

собой область денудации до баррема, а с баррема имело место континентальное осадконакопление сформированием осадков мезомиктовой угленосной формации). В кайнозойское время палеоглубины составляли около 50 м. Исключением является существование области денудации в ладине на ме-

сте Новосибирско-Чукотской складчатой системы и продолжение существования палеоглубин в 200 м в юрско-готеривское время в зоне Лонговского поперечного поднятия и Южно-Чукотского прогиба.

Финансирование. Работа выполнена при поддержке гранта РНФ (проект № 24-17-00020).

СПИСОК ЛИТЕРАТУРЫ

Анисимов О.А., Анохин Ю.А., Лавров С.А. и др. Методы оценки последствий изменения климата для физических и биологических систем. Глава 8. Континентальная многолетняя мерзлота // Анисимов О.А., Борщ С.В., Георгиевский В.Ю. и др. Методы оценки последствий изменения климата для физических и биологических систем. М.: Изд-во ФГБУ НИЦ «Планета», 2012. 512 с.

Буданцев Л.Ю., Головнева Л.Б. Ископаемые флоры Арктики. II. Палеогеновая флора Щпицбергена. СПб.: Марафон, 2009. 400 с.

Виноградов В.И. Изотопные показатели геохимических изменений осадочных пород // Природа. 2007. № 11. С. 22–28.

Волкова В.С. Стратиграфия и тренд палеотемператур в палеогене и неогене Западной Сибири (по данным палинологии) // Геология и геофизика. 2011. Т. 52, № 7. С. 906–915.

Габдуллин Р.Р. Высокоточная циклическая корреляция разрезов фанерозоя Северной Евразии как основа для актуальных палеогеографических и палеоклиматических реконструкций: Дисс. ... докт. геол.-минерал. н. М., 2023. 550 с.

Гольберт А.В., Григорьева К.Н., Ильенок Л.Л. и др. Палеоклиматы Сибири в меловом и палеогеновом периодах. М.: Недра, 1977. 107 с.

Гриненко О.В., Сергеенко А.И., Белолюбский И.Н. Стратиграфия палеогеновых и неогеновых отложений Северо-Востока России // Отечественная геология. 1997. Вып. 8. С. 14–20.

Объяснительная записка. Государственная геологическая карта Российской Федерации. Масштаб $1:1\,000\,000$. Лист R-1, 2 — о-в Врангеля. СПб.: Изд-во СПб картфабрики ВСЕГЕИ, 2014. $144\,c.+12\,вкл.$ (МПР России, Роснедра, ВНИИОКЕАНГЕОЛОГИЯ).

Пчелина Т.М. Палеогеографические и палеоклиматические реконструкции северных районов Арктики в три-

асовом периоде // Геология полярных областей Земли: Материалы XLII Тектонического совещания / Отв. ред. Ю.В. Карякин. М.: ГЕОС, 2009. Т. 2. С. 138–140.

 $\it Cuhuцын B.M.$ Введение в палеоклиматологию. Л.: Недра 1980 г. 248 с.

Тектонический кодекс России / Г.С. Гусев, Н.В. Межеловский, А.В. Гущин и др. / Мин-во природных ресурсов и экологии РФ: Роснедра: Межрегион. центр по геол. Картографии (ГЕОКАРТ) [Отв. ред. Н.В. Межеловский]. М.: ГЕОКАРТ: ГЕОС, 2016. 240 с.

Fot'yanova L.I., Serova M.Ya. Comparison of paleoclimatic data based on plant and foraminiferal evidence from the cenozoic of northeast Asia (Koryak Hills, Kamchatka) // Boulter M.C., Fisher H. (eds). Cenozoic Plants and Climates of the Arctic NATO ASI Series. 1994. Vol. 127. P. 107–114.

Golovneva L.B. Early Paleogene floras of Spitsbergen and north Atlantic floristic exchange // Acta Universitatis Carolinae–Geologica. 2000. Vol. 44, No. 1. P. 39–50.

Herman A.B., Spicer R.A. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya) // Palaeogeogr., Palaeoclim., Palaeoecol. 2010. Vol. 295. P. 409–422.

Herman A.B., Spicer R.A. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean // Nature, 1996. Vol 380. P. 330–333.

Herman A.B., Spicer R.A., Spicer T.E. Environmental constraints on terrestrial 852 vertebrate behaviour and reproduction in the high Arctic of the Late Cretaceous // Palaeogeogr., Palaeoclimatol., Palaeoecol., 2016. Vol. 441. P. 317–338.

Ogg J., Ogg G., Gradstein F. A concise geologic time scale. Elsevier, 2016. 240 p.

Zakharov Y.D., Shigeta Y., Popov A.M., et al. Cretaceous climatic oscillations in the Bering area (Alaska and Koryak Upland): isotopic and paleontological evidence // Sedimentary Geology. 2011. Vol. 235. P. 122–131.

Статья поступила в редакцию 16.09.2024, одобрена после рецензирования 30.10.2024, принята к публикации 25.01.2025