КРАТКИЕ СООБШЕНИЯ

УДК 550.42

A.B. Cавенко¹, B.C. Савенко²

УСЛОВИЯ ОБРАЗОВАНИЯ СЕЛЛАИТА В СОЛЯНЫХ ОТЛОЖЕНИЯХ

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», 119991, Москва, ГСП-1, Ленинские Горы, 1

Lomonosov Moscow State University, 119991, GSP-1, Leninskiye Gory, 1

Экспериментально определены условия осаждения фторида магния (селлаита) из морской воды с соленостью 35–105‰. Установлено, что осаждение MgF₂ при солености 35, 70 и 105‰ происходит при концентрации растворенного фтора свыше 37, 46 и 51 мг/л соответственно. В изолированных эвапоритовых бассейнах концентрация фтора, необходимая для образования селлаита, не достигается на всех стадиях испарительного сгущения морской воды. Предполагается, что высокая концентрация фтора, достаточная для осаждения селлаита, возникает в результате совокупного влияния испарения и дополнительного поступления этого элемента в солеродные бассейны с речным стоком или (и) высвобождения соосажденного и сорбированного фтора в ходе постседиментационной перекристаллизации соляных минералов.

Ключевые слова: фтор, селлаит, морская вода, солеродные (эвапоритовые) бассейны, соляные отложения.

The conditions for precipitation of magnesium fluoride (sellaite) from seawater with salinity of 35-105% were experimentally determined. It was established that precipitation of MgF_2 at salinity of 35, 70, and 105% occurs at the concentration of dissolved fluorine above 37, 46, and 51 mg/l, respectively. In isolated evaporitic basins, the fluorine concentration required for the formation of sellaite is not achieved at all stages of the evaporation of seawater. It is assumed that high concentration of fluorine sufficient for the precipitation of sellaite arise as a result of the combined effect of evaporation and additional inflow of this element into evaporitic basins with river runoff or/and the release of coprecipitated and adsorbed fluorine during of postsed-imentary recrystallization of salt minerals.

Key words: fluorine, sellaite, seawater, salt (evaporitic) basins, saline deposits.

Введение. Селлаит MgF_2 и флюорит CaF_2 минералы фтора, которые довольно редко встречаются в соляных отложениях. Если в отношении условий образования осадочного флюорита имеются достаточно надежные экспериментальные данные [Казаков, Соколова, 1950], то условия образования селлаита до сих пор остаются не выясненными. Отмечено, что селлаит как первичный минерал в эвапоритовых отложениях встречается вместе с калиевыми солями [Steward, 1963], осаждающимися на поздних стадиях сгущения морской воды при наиболее высоком содержании ионов магния в растворе. Последнее обстоятельство, на первый взгляд, должно способствовать выделению из рапы твердой фазы MgF₂, однако образование прочных комплексов MgF⁺, вклад которых также увеличивается с ростом концентрации растворенного магния, препятствует этому процессу. Кроме того, поскольку произведение растворимости Са F₂ в 160 раз меньше такового для MgF₂ [Лурье, 1989], можно ожидать, что только небольшая часть фтора

остается в растворенном состоянии до стадии осаждения калийных солей и участвует в образовании селлаита, тогда как основная масса фтора осаждается в форме флюорита на более ранних стадиях сгущения морской воды. Цель работы заключалась в выяснении условий образования селлаита в эвапоритовых отложениях по данным экспериментального моделирования осаждения фторидных минеральных фаз из морской воды нормальной и повышенной солености.

Материалы и методы исследований. Методы исследований. В экспериментах использовали искусственную морскую воду с соленостью 35, 70 и 105‰, содержащую компоненты основного солевого состава согласно данным [Попов и др., 1979], но с заменой бикарбоната натрия на хлорид натрия, чтобы предотвратить осаждение твердой фазы CaCO₃. Верхний предел солености морской воды ограничен величиной 105‰, чтобы исключить возможность образования нефторидных твердых фаз (гипса, галита и др.), присутствие которых могло бы повлиять на концентрацию фтора

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра геохимии, ст. науч. с.; *e-mail*: alla savenko@rambler.ru

² Московский государственный университет имени М.В. Ломоносова, географический факультет, кафедра гидрологии суши, профессор, вед. науч. с.; *e-mail*: alla_savenko@rambler.ru

в растворе в результате процессов соосаждения и сорбшии.

В пластиковые пробирки к аликвотам по 40 мл искусственной морской воды разной солености добавляли навески твердой соли NaF массой от 25 до 300 мг, что позволило создать в опытах высокое общее содержание фтора, значительно превышающее его максимально возможную концентрацию в растворе. После трех недель ежедневного перемешивания суспензий на шейкере по 8-10 ч при комнатной температуре растворы отфильтровывали через мембранный фильтр с размером пор 0,22 мкм. В фильтрате и образцах исходной морской воды определяли концентрацию фторидов методом прямой потенциометрии [Савенко, 1986], а также содержание магния и кальция методом капиллярного электрофореза при разбавлении высокоминерализованных растворов 1: 100-1: 200 [Комарова, Каменцев, 2006]. Погрешность измерений не превышала ±3%.

Результаты исследований и их обсуждение. Из приведенных в таблице данных следует, что для каждого значения солености наблюдается некоторое возрастание равновесной концентрации растворенных фторидов при увеличении массы навески NaF. Это, по-видимому, связано с изменением составов исходных растворов, вызванным не только осаждением твердых фаз CaF₂ и MgF₂, но и растворением остаточного NaF вплоть до до-

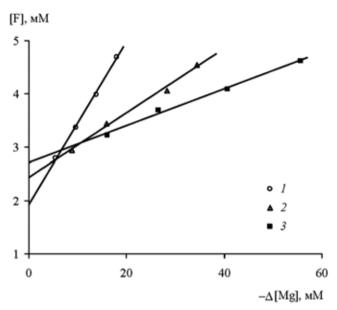
стижения состояния насыщения по этой твердой фазе. В опытах с одинаковыми добавками NaF концентрация растворенных фторидов находится приблизительно на одинаковом уровне во всем изученном диапазоне солености морской воды. Мольное отношение суммы изменений содержания кальция и магния к изменению концентрации фтора составляет 0,4-0,5, что близко к стехиометрии для фторидов щелочноземельных элементов и указывает на одновременное осаждение фтора в форме CaF_2 и MgF_2 . Прямое определение селлаита затруднено тем, что осадки фторидов кальция и магния представлены тонкодисперсными рентгеноаморфными фазами, остающимися таковыми по крайней мере в течение 4-5 мес.

Если происходит одновременное осаждение фторидов кальция и магния, то в силу небольших различий коэффициентов активности ионов Ca²⁺ и Mg²⁺ отношение значений концентрации этих элементов в растворе должно быть постоянным и близко соответствовать отношению величин произведения растворимости этих фаз:

$$\frac{L_{\text{MgF}_2}^0}{L_{\text{CaF}_2}^0} = \frac{[\text{Mg}^{2+}]\gamma_{\text{Mg}^{2+}}}{[\text{Ca}^{2+}]\gamma_{\text{Ca}^{2+}}} \approx \frac{[\text{Mg}^{2+}]}{[\text{Ca}^{2+}]}.$$

Действительно, в проведенных экспериментах мольное отношение $[Mg^{2+}]/[Ca^{2+}]$ постоянно и равно $6,2\pm0,2$ (таблица). По справочным данным

Изменение состава морской воды разной солености при взаимодействии с NaF


Соленость морской воды, %	Навеска NaF, мг/л	Равновесные концентрации				$\Delta[Ca^{2+}] + \Delta[Mg^{2+}]^*$	$\frac{[Mg^{2+}]^{**}}{[Ca^{2+}]}$
		F ⁻ , мг/л	F ⁻ , мМ	Мg ²⁺ , мМ	Са ²⁺ , мМ	Δ [F $^-$]	[Ca ²⁺]
35	0	0	0	54,5	10,55	-	_
	625	53,0	2,79	49,0	7,72	0,69	6,35
	1250	64,1	3,37	44,9	7,33	0,49	6,13
	1875	75,8	3,99	40,7	6,65	0,44	6,12
	2500	89,2	4,70	36,5	5,32	0,42	(6,86)
Среднее						0,51±0,12	6,20
70	0	0	0	109,7	21,05	-	_
	1250	56,0	2,95	100,8	16,45	0,50	6,13
	2500	65,3	3,44	93,8	14,44	0,40	6,50
	3750	77,2	4,06	81,5	13,22	0,42	6,16
	5000	86,2	4,54	75,4	10,18	0,39	(7,41)
Среднее						0,43±0,05	6,26
105	0	0	0	163,7	31,57	_	_
	1875	61,1	3,22	147,5	25,51	0,54	5,78
	3750	70,1	3,69	137,1	21,56	0,43	6,36
	5625	77,6	4,08	123,0	19,21	0,41	6,40
	7500	87,8	4,62	107,9	11,50	0,44	(9,38)
Среднее						0,45±0,06	6,18

Примечания. * Δ [Са (Mg)] — разность мольных концентраций кальция (магния) в равновесной с минералами фтора и исходной морской воде соответствующей солености; Δ [F^-] — разность мольных концентраций фтора в равновесной морской воде и в добавленной навеске NaF. ** При расчете средних значений отношения [Mg²⁺]/[Ca²⁺] последние опыты в каждой серии, проводившиеся с максимальными добавками NaF, не учитывались.

[Лурье, 1989] величины $L_{\rm MgF_2}^0$ и $L_{\rm CaF_2}^0$ составляют 6,5·10⁻⁹ и 4,0·10⁻¹¹ соответственно, что приводит к существенно большему отношению [Mg²⁺]/[Ca²⁺], равному 162. Подобные расхождения не критические и могут быть связаны с различиями значений произведения растворимости кристаллических и свежеосажденных твердых фаз. Например, многократное (в 5–8 раз) превышение произведения растворимости осажденного CaF₂ над таковым для кристаллической фазы ранее установлено для нормальной морской воды и растворов, имитирующих поровые воды морских осадков [Савенко, 1983].

Из результатов экспериментов следует линейная зависимость равновесной концентрации растворенных фторидов от количества осажденного MgF₂, равного разности исходной и равновесной концентрации магния в растворе (рисунок). Экстраполяция на нулевую разность значений концентрации магния позволяет определить концентрацию фторидов, при которой начинается осаждение MgF₂. При этом экстраполяционные точки соответствуют минимальным изменениям исходных растворов, вызванным добавками NaF. Для морской воды с соленостью 35, 70 и 105‰ концентрация фторидов начала осаждения МgF2 составляет 1,93, 2,42 и 2,70 мМ соответственно (37, 46 и 51 мг/л). Содержание растворенных фторидов в природной морской воде соответствующей солености составляет 1,3, 2,6 и 3,9 мг/л, что намного ниже значений концентрации, при которых возможно осаждение MgF₂. Более того, даже при 9-10-кратном сгущении нормальной морской воды, когда начинается садка калийных солей — сильвина и карналлита, естественное увеличение концентрации растворенных фторидов до 14-16 мг/л оказывается недостаточным для осаждения МgF₂.

Вывод о невозможности образования селлаита при испарительном концентрировании морской воды справедлив только для изолированных эвапоритовых бассейнов, не имеющих дополнительных источников фтора. Вместе с тем для многих современных и древних эвапоритовых бассейнов важной статьей водно-солевого баланса служит речной сток, в котором доля фторидов в общей минерализации намного больше, чем в морской воде. Например, доля фтора в составе морских солей равна 0,0037% [Попов и др., 1979], тогда как для солей мирового речного стока она составляет в среднем 0,12% [Гордеев, 2012]. Поэтому при значительном вкладе речного стока в водно-солевой баланс эвапоритовых бассейнов и испарении, превышающем приток пресных вод, концентрация растворенных фторидов может достигать величин, необходимых для осаждения MgF₂. Также не исключено образование селлаита на стадии постсе-

Зависимость равновесной концентрации растворенных фторидов ([F]) от разности значений исходной и равновесной концентрации магния ($-\Delta$ [Mg]), соответствующей количеству осажденного MgF₂, для морской воды с соленостью 35 (*I*), 70 (*2*) и 105‰ (*3*)

диментационных изменений отложений солей, при которых возможно возникновение локальных областей с высокой концентрацией фторидов в результате перекристаллизации соляных минералов и высвобождения ранее поглощенных примесей, в том числе фтора. К сожалению, имеющаяся в настоящее время крайне ограниченная информация о фторе в соляных отложениях не позволяет отдать предпочтение одному из указанных механизмов генезиса селлаита. Для решения этого вопроса необходимы данные о содержании фтора в основных минералах соляных отложений и сведения о коэффициентах распределения фтора между этими минералами и маточными растворами.

Заключение. Образование селлаита в солеродных бассейнах может происходить только при высоких значениях концентрации растворенного фтора в рапе (>50 мг/л), которые не достигаются при автономном испарительном сгущении морской воды. Необходимая для образования селлаита концентрация фтора может возникать в результате поступления в эвапоритовые бассейны значительного объема речных вод, в которых доля фторидов в общей минерализации намного превышает таковую в морской воде. Другим процессом, увеличивающим содержание фтора в рапе, может быть перекристаллизация соляных минералов в ходе их постседиментационных изменений, приводящая к высвобождению фторидов, которые ранее были поглощены в процессах сорбции и соосаждения.

Финансирование. Работа выполнена при поддержке РФФИ (проект № 18-05-01133).

СПИСОК ЛИТЕРАТУРЫ

Гордеев В.В. Геохимия системы река—море. М.: ИП И.И. Матушкина, 2012.

Казаков А.В., *Соколова Е.И.* Условия образования флюорита в осадочных породах (флюоритовая система) // Тр. Института геологических наук. Геол. сер. Вып. 114. (№ 40). М., 1950. С. 22-64.

Комарова Н.В., *Каменцев Я.С.* Практическое руководство по использованию систем капиллярного электрофореза «КАПЕЛЬ». СПб.: Веда, 2006.

Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989.

Попов Н.И., Федоров К.Н., Орлов В.М. Морская вода. М.: Наука, 1979.

Савенко В.С. Об особенностях геохимии фтора в иловых водах осадков высокопродуктивных районов океана // Геохимия. 1983. № 12. С. 1791—1795.

Савенко В.С. Введение в ионометрию природных вод. Л.: Гидрометеоиздат, 1986.

Steward F.H. Marine evaporites (Chapter Y) // Data of Geochemistry, 6th ed. U.S. Geol. Surv. Prof. Pap. 440-Y. Washington, 1963.

Поступила в редакцию 26.01.2021 Поступила с доработки 05.04.2021 Принята к публикации 05.04.2021