УДК 549.514.8-9:551.22(477.75)

Э.М. Спиридонов 1 , Е.С. Семиколенных 2 , В.И. Лысенко 3 , С.В. Филимонов 4 , Н.Н. Коротаева 5 , Н.Н. Кривицкая 6

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», геологический факультет. 119991, Москва, ГСП-1, Ленинские горы, 1

Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского 199106, Санкт-Петербург, Средний пр., 74

Moscow State University, Faculty of Geology. 119991, Moscow, GSP-1, Leninskiye Gory, 1 All-Russian Geological Research Institute named after A.P. Karpinsky. 199106, St. Petersburg, Sredny Ave., 74

АРМОЛКОЛИТСОДЕРЖАЩИЕ ОСТРОВОДУЖНЫЕ ПЛАГИОЛЕРЦОЛИТЫ И ОЛИВИНОВЫЕ ГАББРО-НОРИТ-ДОЛЕРИТЫ РАЙОНА БАЛАКЛАВЫ, КРЫМ

Армолколит (Mg,Fe)Ti₂O₅ — характерный минерал титанистых базальтов Луны — широко развит в островодужных низкощелочных плагиолерцолитах и оливиновых габбро-норит-долеритах раннебайосского первомайско-аюдагского комплекса мезозоид Горного Крыма, в береговых обрывах около Балаклавы под Севастополем. Кумулятивный Мg-оливин Балаклавы содержит включения хромшпинелидов. Хромшпинелиды-I — умереннохромистые, железистые (f = 45÷55), содержат 8−14 масс.% Fe₂O₃ и до 1,2% TiO₂, что четко отличает их от хромшпинелидов альпинотипных гипербазитов. Хромшпинелиды-II — более железистые (f = 58÷75) и содержат до 26 масс.% Fe₂O₃, 2,5−9% TiO₂, до 1,8% V₂O₃. Таблички армолколита размером до 0,6×0,2 мм включены в интеркумулусные магнезиальные бронзит и авгит, анортит и битовнит. Армолколит содержит (масс.%): 63−66 TiO₂, 6,9−8,4 MgO, 9,9−11,7 FeO, 13−18 Fe₂O₃, до 1,5 Al₂O₃ и V₂O₃, до 0,7 Cr₂O₃. Состав армолколита отвечает формуле (Mg_{0,38-0,45}Fe²⁺ $_{0,30-0,34}$ Fe³⁺ $_{0,36-0,49}$ V_{0,04-0,05}Al_{0-0,06}Cr_{0-0,02} Ti_{1,73-1,77})₃O₅; в миналах присутствует (мол.%): 38−45 MgTi₂O₅, 31−36 Fe²⁺Ti₂O₅, 23−27 Fe³⁺ $_2$ TiO₅. С армолколитом ассоциируют бадделеит и цирконолит. Состав цирконолита отвечает формуле (Ca_{0,7}Y_{0,2}REE_{0,1})Zr(Ti_{1,6}Fe²⁺ $_{0,3}$ Fe³⁺ $_{0,1}$ 2O₇. Более поздние минералы — ильменит-I с 5−8 масс.% MgO; ильменит-II, бедный Mg и обогащенный Mn, который замещает армолколит. Наличие (сохранность) армолколита и цирконолита в малоглубинных интрузивах Горного Крыма, возможно, обусловлено слабым развитием в них позднемагматических процессов.

Ключевые слова: хромшпинелиды, армолколит, бадделеит, цирконолит, Мg-ильменит, островодужные плагиолерцолиты, оливиновые габбро-норит-долериты, Горный Крым.

Armalcolite (Mg,Fe)Ti $_2O_5$ is characteristic mineral of titanian basalts of the Moon, as well as lamproites, other alkaline magmatic Earth rocks, impactites and other formations. It is widely represented in island-arc low-alkaline plagiolherzolites and olivine gabbro-norite-dolerites of the Early-Bajocian Pervomaysk—Ayu-Dag complex of mesozoids in Rocky Crimea, specifically, in the littoral Balaklava cliffs near Sevastopol. Crystals of cumulative Mg-olivine contain the inclusions of alumomagnesiochromite and Mg alumochromite in the center and the inclusions of alumochromite partly replaced by chromespinels of the 2nd generation (Ti-Al ferrychromite and chrometitanomagnetite) in the external zones. Chromespinels of the 1st generation are moderately chromic and ferrian (f = 45÷55), contain 8–14 mass.% Fe $_2O_3$ and up to 1,2% TiO $_2$; that sharply distinguishes them from chromespinels of alpinotypes ultrabasic rocks. Chromespinels of the 2nd generation are more ferrian (f = 58÷75) and contain up to 26 mass.% Fe $_2O_3$, 2,5–9% TiO $_2$ and up to 1,8% V $_2O_3$. The typical basic trend from ferrian alumomagnesiochromite to chrometitanomagnetite is characteristic for Balaklava chromespinels. Tabular armalcolite crystals are up to 0,6×0,2 mm included in intercumulus magnesian bronzite and augite, anorthite and

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, профессор; *e-mail*: ernstspiridon@gmail.com

 $^{^2}$ Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского, науч. с.; e-mail: geny_shen@ mail.ru

³ Московский государственный университет имени М.В. Ломоносова (филиал в г. Севастополь), факультет естественных наук, кафедра географии океана, доцент; *e-mail*: niagara sev@mail.ru

⁴ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, доцент; *e-mail*: sefi@geol.msu.ru

⁵ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра петрологии, инженер; *e-mail*: mineral@geol.msu.ru

⁶ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, ст. науч. с.; *e-mail*: nnkriv@geol.msu.ru

bytownite. Balaklava armalcolite contains 63–66 mass.% TiO_2 , 6,9–8,4% MgO, 9,9–11,7% FeO, 13–18% Fe_2O_3 , up to 1,5% Al_2O_3 and V_2O_3 , up to 0,7% Cr_2O_3 . The armalcolite formulae is $(Mg_{0,38-0,45}Fe^{2+}_{0,30-0,34}Fe^{3+}_{0,36-0,49}V_{0,04-0,05}Al_{0-0,06}Cr_{0-0,02}Ti_{1,73-1,77})_3O_5$; in minals, molar %: 38–45 MgTi₂O₅, 31–36 Fe²⁺Ti₂O₅, 23–27 Fe³⁺₂TiO₅. Rare baddeleyite with 1,6–3,1% HfO₂ (ZrO₂:HfO₂ = 57–30, av. 44) and zirconolite associate with armalcolite. Zirconolite contains 4–6,5 mass.% Y₂O₃, 4–8% REE₂O₃, from traces up to 4,5% ThO₂, <0,5% UO₂, 0,7–1,4% HfO₂ (ZrO₂:HfO₂ = 47–25, av. 38). The distribution of lanthanides in Balaklava zirconolite Ce = Nd > Dy > Gd > Sm, Yb, Er, Lu, Tb > Pr. The zirconolite formulae is $(Ca_{0,7}Y_{0,2}REE_{0,1})$ Zr($Ti_{1,6}Fe^{2+}_{0,3}Fe^{3+}_{0,1})_2O_7$. The recent formations are ilmenite-I with 5–8 mass.% MgO and 0,3–0,6% MnO, titanomagnetite, hydroxyl-fluorapatite, ilmenite-II, poor in Mg and enriched in Mn. Armalcolite is partly replaced by ilmenite-II. Perhaps, an existence and preservation of armalcolite and zirconolite within the near surface basic intrusions of the Crimean Mountains is caused by poor development of late magmatic processes.

Key words: chromespinels, armalcolite, baddeleyite, zirconolite, Mg ilmenite, island-arc plagiolherzolites, olivine gabbro-norite-dolerites, Crimean Mountains.

Введение. Акцессорные минералы магматических горных пород — индикаторы петрогенеза, не менее информативные, чем породообразующие минералы. Для мезозойских магматических горных пород Крыма краткие сведения о них приведены в работах [Попов, 1938; Лучицкий, 1939; Муратов, 1973; Спиридонов и др., 1990]. Относительно детально изучены циркон, торит, бадделеит, чевкинит, перрьерит, цирконолит и алланит кварцевых габброидов Аю-Дага [Спиридонов и др., 2018б, в]. В статье представлены результаты исследования акцессорных армолколита, цирконолита, бадделеита, хромшпинелидов и ильменита — характерных минералов островодужных низкощелочных плагиолерцолитов и оливиновых габбро-норит-долеритов первомайско-аюдагского интрузивного комплекса, обнаженных в береговых обрывах около Балаклавы под Севастополем.

Армолколит — ромбический оксид титана, магния и железа (Mg,Fe)Ti₂O₅ из группы псевдобрукита, один из первых минеральных видов, открытых на Луне. Минерал назван в честь астронавтов Н. Армстронга, Э. Олдрина и А. Коллинза [Anderson et al., 1970], которые 21 июля 1969 г. первыми из землян ступили на поверхность Луны. Армолколит — характерный минерал титанистых лунных базальтов, в которых он включен в матрицу пироксенов, Са-плагиоклаза и стекла, ассоциирует с акцессорными бадделеитом и цирконолитом, некоторые разновидности лунного армолколита богаты Zr, часто на армолколит нарастает и его замещает ильменит [Anderson et al., 1970; Haggerty, 1973; Steel, 1974; Фрондел, 1978]. В земных образованиях армолколит относительно редкий минерал, это типоморфный акцессорный минерал лампроитов [Velde, 1975], некоторых типов кимберлитов [Розова и др., 1984] и щелочных базальтоидов [Цымбал и др., 1980; Grégoire et al., 2000]. Армолколит обычен в импактных стеклах, в которых представлен разновидностью, богатой Mn [El Goresy, Chao, 1976]. Более редки находки армолколита в толеитовых базальтах и долеритах трапповой формации Kappy [Cawthorn, Biggar, 2008], норитах и пироксенитах Бушвельдского интрузива [Mcdonald et al., 2005]. Армолколит развит в глубокотрансформированных ксенолитах углистых аргиллитов, которые содержат самородное железо и графит, в базальтах и долеритах Североатлантической трапповой формации на о. Диско около Гренландии [Pedersen, 1981].

Для минералов группы псевдобрукита помимо изовалентного изоморфизма Mg↔Fe²⁺ характерен гетеровалентный изоморфизм (Mg, Fe^{2+}) + $Ti^{4+} \leftrightarrow Fe^{3+} + Fe^{3+}$ [Akimoto et al., 1957; Bowles, 1988]. В работе [Bowles, 1988] показано, что состав армолколита лунных пород, содержащих самородное железо, отклоняется от MgTi₂O₅-FeTi₂O₅ к $TiTi_2O_5$ (минерал содержит некоторое количество трехвалентного титана), а состав армолколита земных образований, возникших в более окислительной обстановке, отклоняется от MgTi₂O₅-Fe- Ti_2O_5 к псевдобрукиту Fe_2TiO_5 , земной армолколит содержит заметное количество трехвалентного железа. В работах [Lindsley et al., 1974; Friel et al., 1977; Stanin, Taylor, 1980] показано, что армолколит — высокотемпературный минерал, обычно кристаллизующийся при температуре не менее 900 °С и в довольно узком диапазоне fO_2 — в восстановительной обстановке, близкой к равновесию углерод (графит)-монооксид углерода СО.

Бадделеит — моноклинный ZrO₂ — характерный акцессорный минерал бедных кремнеземом магматических горных пород, как щелочных (кимберлитов, нефелиновых сиенитов, щелочных габбро) и связанных с ними высокотемпературных щелочных метасоматитов [Franco, Loewenstein, 1948; Геохимия..., 1964; Кухаренко и др., 1965; Капустин, 1971; Scatena-Wachel, Jones, 1984; Sørensen, 1997], так и нещелочных — оливиновых габброидов, анортозитов и иных [Годлевский, Надеждина, 1970; Спиридонов и др., 2018б] и недосыщенных кремнеземом высокотемпературных не щелочных метасоматитов — магнезиальных скарнов [Gübelin, Peretti, 1977]. Особый генетический тип — бадделеит в импактных стеклах — продукт ударной деструкции циркона [El Goresy, 1965].

Цирконолит — сложный оксид Zr-Ti-Ca-Y-Fe-Mg-Al с формулой (Ca,Y)Zr $(Ti,Fe,Mg,Al)_2O_7$,

открытый Л.С. Бородиным в кальцитовых карбонатитах и связанных с ними высокотемпературных щелочных метасоматитах — камафоритах (фоскоритах) [Бородин и др., 1956, 1973]. В дальнейшем цирконолит был описан в карбонатитах разнообразного состава, в фенитах, окружающих интрузивы нефелиновых сиенитов [Геохимия..., 1964; Кухаренко и др., 1965; Капустин, 1971; Меньшиков и др., 2014]. В известково-щелочных магматических породах он редок — в ассоциации с бадделеитом установлен в титанистых базальтах Луны [Фрондел, 1978] и в островодужных габброидах Аю-Дага в Крыму [Спиридонов и др., 20186].

Геология Горного Крыма. Горный Крым мезозойское покровно-складчатое сооружение, состоящее из северной Лозовской и южной Горно-Крымской тектонических зон. Небольшие интрузивные тела богатых оливином пород расположены на крайнем западе Горно-Крымской зоны. Значительную часть складчатого комплекса Горного Крыма слагают образования островодужной стадии. Это главным образом терригенные среднетриасовые—нижнеюрские толщи (T_2-J_1) таврической и эскиордынской серий, сложнодислоцированные и несогласно перекрытые среднеюрскими (Ј2) угленосными конгломератопесчано-глинистыми толщами, которые заметно дислоцированы. Терригенные толщи пересечены и контактово метаморфизованы небольшими плутонами раннебайосских кварцевых габбро-норитдолеритов и кварцевых габбро-норит-диоритов до богатых оливином габбро-норит-долеритов и плагиолерцолитов, с одной стороны, и до кварцевых диоритов, плагиогранитов и гранофировых гранитов — с другой [Попов, 1938; Лучицкий, 1939; Муратов, 1973; Спиридонов и др., 1990, 2018; Морозова и др., 2012]. В.В. Плошко выделял эти магматические образования в ассоциацию пикритов и кварцевых диабазов [Плошко и др., 1979]. Э.М. Спиридонов и Т.О. Федоров [1990] выделили их как первомайско-аюдагский интрузивный комплекс. К этому комплексу принадлежит большая часть интрузивов Горного Крыма. Интрузивы первомайско-аюдагского комплекса пересечены жерловинами и дайками базальтов позднебайосской островодужной бодракско-карадагской вулканический серии [Спиридонов и др., 1990].

Интрузивные тела плагиолерцолитов и оливиновых габбро-норит-долеритов в береговых обрывах Балаклавы. Серия дайкообразных и линзообразных тел интрузивных базитов долготного север-северовосточного простирания обнажена в береговых обрывах около Балаклавы под Севастополем. Размеры обнаженных частей отдельных интрузивов — длина до 1 км, ширина до 0,2—0,5 км, высота обнаженной части до 0,25 км. Расположенные западнее интрузивные тела сложены преимущественно плагиолерцолитами и оливиновыми габбронорит-долеритами, восточнее — преимущественно

безоливиновыми габбро-норит-долеритами и долеритами. Центральные части интрузивных тел сложены среднезернистыми, изредка средне-крупнозернистыми породами. Эндоконтактовые части интрузивов обычно представлены мелкозернистыми оливиновыми габброидами до пикритов. Интрузивы, как правило, сильно тектонизированы, их контакты сорваны, породы брекчированы и интенсивно серпентинизированы.

Материалы и методы исследования. По образцам интрузивных пород около Балаклавы, изученных в полевых условиях Е.С. Семиколенных, выполнены химические анализы, изготовлены шлифы и аншлифы. Состав минералов интрузивных пород изучен оптически и с помощью аналитического комплекса с комбинированной системой микроанализа на базе СЭМ «Jeol JSM-6480 LV» (лаборатория локальных методов исследований кафедры петрологии геологического факультета МГУ имени М.В. Ломоносова). Методика измерений стандартная [Рид, 2008]. Фотографии в режиме отраженных электронов и микрозондовые анализы минералов выполнила аналитик-исследователь Н.Н. Коротаева. В таблицах и на рисунках приведена единая нумерация анализов минералов.

Плагиолерцолиты и оливиновые габбро-норитдолериты. Породы центральных частей исследованных интрузивов обычно среднезернистые, с массивной текстурой, состоят из преобладающих идиоморфных кристаллов кумулятивного оливина и переменного количества интеркумулусных моноклинного и ромбического пироксенов, анортита и битовнита. Средний химический состав пород (n=3) (macc.%): SiO_2 37,46; TiO_2 0,16; P_2O_5 0,11; Cr₂O₃ 0,14; Al₂O₃ 9,86; FeO 8,36; MnO 0,13; MgO 23,07; NiO 0,09; CaO 4,04; Na₂O 0,18; K₂O 0,08: потери при прокаливании 16,12; сумма 99,80%. Значительная величина потерь при прокаливании объясняется тем, что породы интенсивно серпентинизированы. В пересчете на безводный состав породы в среднем содержат 44,8 масс. % SiO₂, их состав отвечает низкощелочным глиноземистым перидотитам — плагиоклазовым лерцолитам. Обращает внимание заметное содержание Ті и Р при стандартно высоких значениях концентрации Сг и Ni. От плагиолерцолитов наблюдаются постепенные переходы к меланократовым оливиновым габбро-норит-долеритам, содержищим заметное количество идиоморфных призматических кристаллов анортита и битовнита.

Размер кристаллов кумулятивного оливина от 0,5 до 3—4 мм, чаще около 2 мм. Оливин полностью замещен сначала агрегатами иддингсита с характерными продольными криволинейными трещинками, полные псевдоморфозы по иддингситу слагают серпентины — ранний лизардит и более поздний антигорит, которые частично замещены еще более поздним антофиллитом (рис. 1), часто вместе с тальком [Спиридонов и

Рис. 1. Оливин с включениями хромшпинелидов (белое). Оливин замещен иддингситом с характерными микротрещинами; иддингсит в свою очередь замещен лизардитом, затем антигоритом, антигорит частично замещен антофиллитом (небольшие призматические кристаллы среди серпентина); в отраженных электронах

др., 2018а]. Судя по валовому составу изученных пород, состав оливина был близок к хризолиту (Fo_{85-83}). Размер ксеноморфных кристаллов интеркумулусных авгита 4–5 мм (чаще 1,5–3 мм), бронзита и Са-плагиоклаза — до 3 мм. Состав магнезиального авгита (эндиопсида) отвечает $Ca_{42,8}Mg_{49,3-50,0}Fe_{7,2-7,9}$, магнезиального бронзита — $Ca_{3,3}Mg_{81,7-81,9}Fe_{14,8-15,0}$, анортита — An_{94-90} , битовнита — An_{89-83} . Пироксены нередко замещены агрегатами хлорита, тремолита, корренсита. Анортит и битовнит почти повсеместно замещены тонкозернистыми агрегатами клиноцоизита, везувиана, гидрогроссуляра, пренита.

Хромшпинелиды. Кристаллы оливина повсеместно содержат микровключения хромшпинелидов. В центре кристаллов оливина — мелкие октаэдры и кубооктаэдры алюмомагнезиохромита (ан. 1-4, табл. 1) и магнезиального алюмохромита (ан. 5-8, табл. 1), представляющие первую генерцию хромшпинелидов. В краевых частях кристаллов оливина размер выделений алюмохромита часто несколько больше — до 40 мкм (рис. 1). На алюмохромит нередко наросли и частично его замещают хромшпинелиды второй генерации — Ti-Al феррихромит (ан. 9–12, табл. 2) и хромтитаномагнетит (ан. 13-15, табл. 2). Композитные кристаллы хромшпинелидов обычно развиты на контактах оливина с минералами интеркумулуса. Иногда хромтитаномагнетит 2-й генерации слагает обособленные кристаллы с поперечником до 200 мкм, включенные в интеркумулусные пироксены и плагиоклаз. Хромшпинелиды 1-й генерации умеренно хромистые, железистые (f = 45-55), содержат 8-14 масс.% Fe_2O_3 и до 1,2 масс.% ТіО2, что резко отличает их от хромшпинелидов альпинотипных гипербазитов. Хромшпинелиды 2-й генерации более железистые (f = 58-75) и обогащены трехвалентным железом (до 26 масс.%

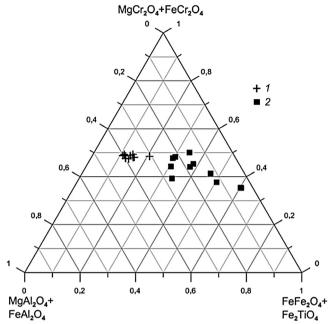


Рис. 2. Состав хромшпинелидов 1-й генерации (*I*) и 2-й генерации (*2*) плагиолерцолитов и оливиновых габбро-норит-долеритов района Балаклавы, Крым

 Fe_2O_3), титаном (2,5—9 масс.% TiO_2) и ванадием (до 1,8 масс.% V_2O_3). Для хромшпинелидов Балаклавы в целом характерен типичный для базитовых пород тренд от железистого алюмомагнезиохромита к хромтитаномагнетиту (рис. 2). Впервые такой тренд был установлен для хромшпинелидов базитов Луны [Фрондел, 1978]. Кристаллы хромшпинелидов описываемых пород района Балаклавы часто брекчированы, алюмохромит, феррихромит и хромтитаномагнетит вдоль микротрещин замешены магнетитом.

Армолколит. Таблитчатые кристаллы армолколита длиной до 0,6 мм и толщиной до 0,2 мм включены в интеркумулусные магнезиальные бронзит и авгит, анортит и битовнит (рис. 3). Кристаллы армолколита обычно идиоморфные. Встречаются V-образные срастания кристаллов армолколита, возможно, это двойники (рис. 4, A). Кристаллы нередко заметно растворены, часто окружены частичными или полными каймами замещения ильменита и более позднего титанита (рис. 4). Кристаллы армолколита длиной <40 мкм обычно целиком замещены поздним титанитом. Кристаллы армолколита по составу незональные. Вариация состава минерала небольшая. Армолколит содержит 63-66 масс. 710, 6,9-8,4% MgO, 9,9-11,7% FeO, 13-18% Fe₂O₃, до 1,5% Al₂O₃ и V₂O₃, до 0,7% Cr₂O₃, беден Mn, Zn, Ni и Ca; Zr в нем не обнаружен (ан. 16-23, табл. 3). Состав армолколита отвечает $(Mg_{0,38-0,45}Fe^{2+}_{0,30-}$ $_{0,34}{\rm Fe}^{3+}_{0,36-0,49}{\rm V}_{0,04-0,05}{\rm Al}_{0-0,06}{\rm Cr}_{0-0,02}{\rm Ti}_{1,73-1,77})_3{\rm O}_5$ или в миналах 38–45 мол.% MgTi₂O₅, 31–36 мол.% Fe²⁺Ti₂O₅, 23–27 мол.% Fe³⁺₂TiO₅ Армолколит в Горном Крыму по составу близок к распространенному типу земного армолколита.

Таблица 1

Химический состав (масс.%) хромшпинелидов 1-й генерации в островодужных плагиолерцолитах и оливиновых габбро-норит-долеритах района Балаклавы, Крым

Компо- ненты	1	2	3	4	5	6	7	8
MgO	12,03	11,06	11,89	10,93	10,23	10,76	10,03	9,69
NiO	нпо	0,18	0,18	0,15	0,08	0,07	0,06	0,16
FeO	17,10	18,12	17,30	18,38	19,56	19,57	19,88	20,49
MnO	0,32	0,34	0,25	0,32	0,40	0,35	0,49	0,37
ZnO	нпо	0,20	0,18	0,17	0,09	0,19	0,06	0,20
Cr ₂ O ₃	39,75	38,31	40,26	37,91	37,87	39,87	37,97	38,39
Al ₂ O ₃	21,95	20,88	21,58	20,81	21,46	20,51	19,57	16,27
V_2O_3	0,28	0,35	0,20	0,38	0,38	0,29	0,38	0,41
Fe ₂ O ₃	8,38	9,28	8,61	9,79	10,11	9,86	10,25	14,49
TiO ₂	0,39	0,76	0,48	0,78	0,44	0,82	0,99	1,21
Сумма	100,20	99,48	100,93	99,62	100,62	102,29	99,68	101,68
		Содер	жание	минало	ов, мол.	. %		
MgCr ₂ O ₄	48,8	47,9	49,3	47,4	47,7	48,8	47,8	46,2
FeCr ₂ O ₄	_	_	_	_	_	_	0,2	2,3
MgAl ₂ O ₄	6,9	4,2	5,5	4,1	0,3	0,9	_	-
FeAl ₂ O ₄	33,3	34,2	33,5	34,3	39,3	36,2	36,8	30,2
ZnAl ₂ O ₄	_	0,5	0,4	0,4	0,2	0,4	0,1	0,5
FeV ₂ O ₄	0,3	0,5	0,3	0,5	0,5	0,4	0,5	0,5
Fe ₂ TiO ₄	0,9	1,8	1,1	1,8	1,0	1,9	2,4	2,9
FeFe ₂ O ₄	9,3	9,6	8,8	10,2	9,7	10,3	10,8	16,0
MnFe ₂ O ₄	0,8	0,09	0,7	0,9	1,1	0,9	1,3	1,0
NiFe ₂ O ₄	_	0,4	0,4	0,4	0,2	0,2	0,1	0,4
Cr#	48,8	47,9	49,3	47,4	47,7	48,8	48,0	48,5
Al#	40,2	38,9	39,4	38,8	39,8	37,5	36,9	30,7
f, %	44,8	48,8	45,8	49,4	52,5	51,2	53,3	55,1

Примечания. 1-4 — алюмомагнезиохромит; 5-8 — магнезиальный алюмохромит; Cr# — содержание миналов магнезиохромита и хромита; Al# — содержание миналов шпинели и герцинита; f — железистость. Здесь и далее нпо — ниже предела обнаружения.

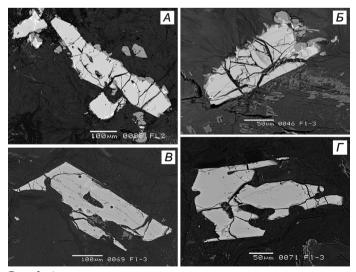


Рис. 3. Армолколит в матрице плагиолерцолитов и оливиновых габбро-норит-долеритов: A — таблица армолколита (ан. 16, табл. 4) с редкими каймами и микропрожилками ильменита-II (белое, ан. 44, 45, табл. 7) и более поздними наростами титанита (серое); B — армолколит (ан. 17), вверху с каймой замещения титанита; B — кристалл армолколита (ан. 22); Γ — кристалл армолколита (ан. 23): в отраженных электронах

Таблица 2

Химический состав (масс.%) хромшпинелидов 2-й генерации в островодужных плагиолерцолитах и оливиновых габбро-норит-долеритах района Балаклавы, Крым

Компо-	9	10	11	12	13	14	15			
MgO	7,48	8,37	9,27	8,91	6,58	7,65	5,77			
NiO	0,17	0,13	0,04	0,23	0,017	0,24	0,30			
FeO	23,59	24,15	22,10	25,16	30,33	29,81	29,65			
MnO	0,46	0,22	0,26	0,37	0,51	0,50	0,54			
ZnO	0,34	0,25	0,29	0,11	0,18	0,14	0,37			
Cr ₂ O ₃	36,44	37,23	36,91	33,20	30,55	27,88	24,84			
Al_2O_3	10,92	14,13	11,76	9,26	6,06	5,88	1,96			
V_2O_3	0,85	0,67	0,90	1,21	1,59	1,81	1,71			
Fe ₂ O ₃	18,40	10,63	15,53	14,95	16,21	16,87	25,97			
TiO ₂	2,32	3,85	4,88	6,77	9,00	10,24	8,57			
Сумма	100,97	99,63	101,94	100,17	101,18	100,99	99,73			
	Содержание миналов, мол. %									
MgCr ₂ O ₄	37,3	41,3	47,5	44,1	33,7	37,7	30,8			
FeCr ₂ O ₄	10,9	7,4	2,6	_	7,8	_	4,5			
MgAl ₂ O ₄	_	-	_	0,5	ı	1,2	-			
FeAl ₂ O ₄	20,8	27,0	14,8	17,5	11,8	10,4	3,2			
ZnAl ₂ O ₄	0,8	0,6	0,7	0,3	0,5	0,3	1,0			
FeV ₂ O ₄	1,2	0,9	1,3	1,6	2,2	2,5	2,5			
Fe ₂ TiO ₄	5,8	9,6	12,6	17,1	23,2	26,3	23,1			
FeFe ₂ O ₄	21,5	12,3	19,6	17,3	18,8	19,6	32,4			
MnFe ₂ O ₄	1,3	0,6	0,8	1,0	1,5	1,4	1,7			
NiFe ₂ O ₄	0,4	0,3	0,1	0,6	0,5	0,6	0,8			
Cr#	48,2	48,7	50,1	44,1	41,5	37,7	35,3			
Al#	21,6	27,6	15,5	18,3	12,3	11,9	4,2			
f, %	64,7	62,3	57,8	61,9	72,7	69,2	75,0			

Примечания. 9-12 — Ti-Al феррихромит; 13-15 — хромтитаномагнетит. Остальные обозначения см. примечания к табл. 1.

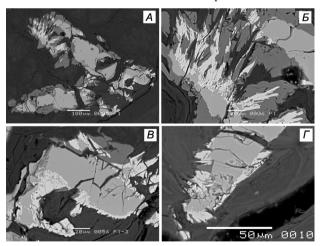


Рис. 4. Армолколит с каймами ильменита-II и титанита: A — V-образное срастание кристаллов армолколита (ан. 18, табл. 4) с каймами замещения ильменита (белое, ан. 46, 47, табл. 7) и титанита (серое); B — армолколит (светло-серое, ан. 19), который интенсивно замещается ильменитом (белое, ан. 48, 49) и титанитом (серое); B — кристалл армолколита (ан. 20) с бахромой замещения из мелких пластинок ильменита (белое, ан. 50), в некоторых местамх на них нарос титанит (серое); Γ — край кристалла армолколита (ан. 21), окруженный каймой ильменита и титанита; темно-серая матрица — измененные пироксены и плагиоклаз; в отраженных электронах

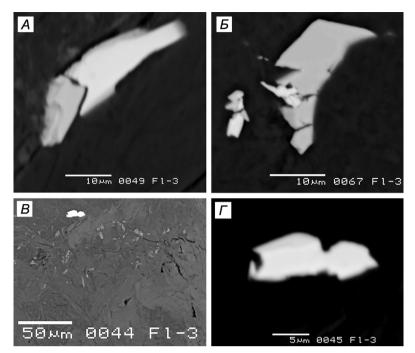


Рис. 5. Бадделеит и цирконолит: A — кристалл цирконолита (белое) (ан. 30, 31, табл. 5) нарос на кристалл бадделеита (ан. 24, 25, табл. 4); E — срастание бадделеита (белое, ан. 26, 27) и цирконолита (светло-серое, ан. 32, 33); E — цирконолит (белое) в матрице базитов; Γ — цирконолит (ан. 35); темно-серая матрица — измененные пироксены и плагиоклаз; в отраженных электронах

Таблица 3 Химический состав (масс.%) армолколита в островодужных плагиолерцолитах и оливиновых габбро-норит-долеритах района Балаклавы, Крым

Компо- ненты	16	17	18	19	20	21	22	23
MgO	8,42	8,19	7,71	7,55	7,54	7,47	7,26	6,91
NiO	0,17	нпо	нпо	нпо	нпо	нпо	нпо	нпо
FeO	10,39	9,92	11,28	11,36	11,11	10,12	11,61	11,71
MnO	0,09	0,17	нпо	0,10	0,09	0,15	нпо	нпо
ZnO	0,03	нпо	нпо	нпо	нпо	нпо	нпо	нпо
CaO	нпо	0,10	нпо	нпо	нпо	0,34	нпо	нпо
TiO ₂	65,96	64,51	65,02	64,41	64,18	63,48	63,89	63,11
Fe ₂ O ₃	13,44	16,22	14,83	14,55	15,12	17,89	15,65	16,01
Al_2O_3	1,53	нпо	1,25	1,06	1,08	нпо	0,78	0,48
V_2O_3	1,37	1,61	1,47	1,41	1,56	1,69	1,48	1,62
Cr ₂ O ₃	0,13	0,21	0,19	0,13	0,16	0,13	нпо	0,73
Сумма	101,53	101,24	101,75	100,57	100,84	101,27	100,67	100,57
Ч	исло ато	мов в фо	рмуле в	расчете	на три	атома м	еталлов	
Mg	0,447	0,443	0,412	0,4085	0,407	0,404	0,394	0,377
Fe ²⁺	0,310	0,301	0,338	0,345	0,336	0,307	0,353	0,358
Fe ³⁺	0,361	0,443	0,400	0,398	0,412	0,489	0,430	0,441
Ni	0,005	_	_	_	_	_	_	_
Mn	0,003	0,005	_	0,003	0,003	0,005		_
Zn	0,001	_	_	_	_	_	_	_
Ca	_	0,003	_	_	_	0,013	_	_
Ti	1,766	1,752	1,750	1,756	1,746	1,729	1,747	1,735
V	0,039	0,047	0,042	0,041	0,045	0,049	0,043	0,047
Al	0,064	_	0,053	0,045	0,046	_	0,033	0,021
Cr	0,004	0,006	0,005	0,004	0,005	0,004	_	0,021
сумма				3	3			
0					5			

Примечания. См. примечания к табл. 1.

Бадделеит слагает мелкие и мельчайшие кристаллы среди интеркумулусных минералов, обособленные или в срастании с цирконолитом (рис. 5, алюмохромитом. Размер выделений бадделеита не превышает 15 мкм, обычно <5 мкм. Состав минерала относительно устойчив (ан. 24-29, табл. 4), заметно варьирует лишь содержание гафния от 1,7 до 3,1 масс.% HfO₂, и, соответственно, величина ZrO_2 : $\bar{H}fO_2$ — от 57 до 30 (среднее 44). Характерно заметное содержание титана $(2,1-2,4\% \text{ TiO}_2)$ и ниобия $(1,4-2,5\% \text{ Nb}_2\text{O}_5)$. Состав описанного бадделеита близок к бадделеиту габброидов Аю-Дага [Спиридонов и др., 20186]. В бадделеите Аю-Дага величина ZrO_2 :HfO₂ — от 56 до 38 (средняя 47). Бадделеит богатых оливином пород около Балаклавы заметно богаче титаном (в среднем 2,2 масс. % TiO₂), чем бадделеит габброидов Аю-Дага (в среднем 1,1 macc.% TiO₂).

Цирконолит слагает мелкие и мельчайшие кристаллы в интеркумулусе, как обособленные (рис. 5, B, Γ), так и срастания с бадделеитом (рис. 5, А, Б) и армолколитом. Размер кристаллов цирконолита обычно не превышает 30 мкм. Кристаллы цирконолита по составу однородные, реже слабозональные. Минерал содержит 32,6-36,8 масс.% TiO₂, 33,1-35,1% ZrO₂, 4,2-6,4% Y₂O₃, 0.8-1.8% Ce₂O₃, 0.6-1.7% Nd₂O₃, 0,6-1,1% Dy₂O₃, 0,4-1% Gd₂O₃, до 4,4% ThO_2 , до 1,3% Nb_2O_5 , до 0,9% Yb_2O_3 , до 0,8% Sm₂O₃, до 0,7% Er₂O₃ и Lu₂O₃, до 0,4% Tb₂O₃ и UO₂, до 0,3% Pr₂O₃ (ан. 30-35, табл. 5). Содержание гафния в цирконолите сотавляет 0,7-1,4 масс.%, величина ZrO_2 : $HfO_2 = 25 \div 47$ (среднее 38). Состав минерала следующий:

 $(Ca_{0,57-0,74}Y_{0,14-0,22}Ce_{0,02-0,04}\times\\\times Nd_{0,01-0,04}Dy_{0,01-0,03}Th_{0-0,06}Sr_{0-0,02}\times\\\times Sm_{0-0,02}Yb_{0-0,02}Er_{0-0,01}Tb_{0-0,01}\times\\\times Lu_{0-0,01}U_{0-0,01}Pr_{0-0,01})_{0,92-1,02}\times\\\times (Zr_{0,98-1,08}Hf_{0,01-0,02})_{1,01-1,10}\times\\\times (Ti_{1,49-1,66}Fe^{3+}_{0-0,27}Fe^{2+}_{0-0,27}V_{0,02-0,03}\times\\\times Al_{0-0,04}Cr_{0-0,02}Mn_{0-0,02})_{1,95-2,04}O_{7}.$

Таким образом, богатые оливином интрузивные породы в районе Балаклавы содержат обычный цирконолит, в котором Ca > Y.

Ильменит — один из распространенных акцессорных минералов богатых оливином интрузивных пород около Балаклавы. Размер кристаллов раннего,

Таблица 4 Химический состав (масс.%) бадделеита в островодужных плагиолерцолитах и оливиновых габбро-норит-долеритах района Балаклавы, Крым

Компоненты	24	25	26	27	28	29		
ZrO ₂	93,35	94,89	92,49	93,54	94,25	93,74		
HfO ₂	1,65	1,95	1,93	2,13	2,49	3,08		
TiO ₂	2,06	2,10	2,23	2,24	2,37	2,15		
Nb ₂ O ₅	2,52	1,37	2,74	2,48	1,87	2,29		
Сумма	100,58	100,31	99,39	100,39	100,98	101,26		
		Число ато	мов в форм	уле				
Zr	Tr 0,936 0,945 0,929 0,932 0,934 0,930							
Hf	0,009	0,010	0,010	0,011	0,013	0,016		
Ti	0,032	0,032	0,035	0,034	0,036	0,033		
Nb	0,023	0,013	0,026	0,023	0,017	0,021		
ZrO ₂ /HfO ₂	57	49	48	44	38	30		

Таблица 5 Химический состав цирконолита (масс.%) в островодужных плагиолерцолитах и оливиновых габбро-норит-долеритах района Балаклавы, Крым

Компо- ненты	30	31	32	33	34	35
CaO	10,25	9,60	10,83	8,67	8,36	11,33
SrO	нпо	0,57	нпо	0,49	0,50	нпо
Y_2O_3	5,56	5,82	6,20	6,42	6,29	4,21
Ce ₂ O ₃	1,43	1,81	1,09	1,52	1,20	0,80
Pr_2O_3	нпо	0,33	нпо	0,34	нпо	нпо
Nd_2O_3	1,43	1,72	1,38	1,63	1,46	0,64
Sm_2O_3	0,54	0,50	нпо	0,76	0,53	0,48
Gd_2O_3	0,45	0,61	0,44	0,96	0,84	0,52
Tb ₂ O ₃	нпо	0,44	нпо	нпо	нпо	нпо
Dy_2O_3	1,08	0,92	0,60	1,36	1,04	0,83
Er ₂ O ₃	нпо	нпо	0,61	0,72	нпо	нпо
Yb ₂ O ₃	0,63	нпо	нпо	0,85	0,80	0,54
Lu ₂ O ₃	нпо	нпо	нпо	нпо	0,72	нпо
ThO ₂	нпо	нпо	0,79	нпо	0,72	4,37
UO ₂	нпо	036	0,29	0,41	0,39	нпо
ZrO ₂	34,09	33,07	34,20	32,09	35,13	33,12
HfO ₂	0,73	0,74	0,80	0,95	1,09	1,35
TiO ₂	36,80	34,83	35,29	33,95	33,55	32,60
Nb ₂ O ₅	нпо	нпо	нпо	нпо	нпо	1,30
Fe ₂ O ₃	7,52	1,37	1,43	7,25	4,32	7,99
FeO	-	5,10	4,87	-	2,45	-
Al_2O_3	нпо	нпо	0,38	нпо	нпо	0,57
V_2O_3	0,54	0,57	0,59	0,55	0,47	0,31
Cr ₂ O ₃	нпо	0,23	0,34	0,27	0,33	нпо
MnO	0,22	нпо	нпо	0,19	нпо	0,44
Сумма	101,27	98,59	99,52	99,25	100,19	101,40
ZrO ₂ /HfO ₂	47	45	43	34	32	25

Примечания. Количество FeO и Fe_2O_3 рассчитано по балансу зарядов. Остальные обозначения см. примечания к табл. 1.

Компо- ненты	30	31	32	33	34	35
Число ат	омов в ф	ормуле в	расчете	на 4 ато	ома мета	иллов
Ca	0,660	0,638	0,699	0,584	0,565	0,737
Sr	-	0,021	-	0,018	0,018	-
Y	0,178	0,192	0,199	0,215	0,211	0,137
Ce	0,031	0,041	0,024	0,035	0,028	0,018
Pr	-	0,007	-	0,008	-	-
Nd	0,031	0,038	0,030	0,037	0,033	0,014
Sm	0,011	0,011	-	0,017	0,012	0,011
Gd	0,009	0,013	0,009	0,020	0,018	0,011
Tb	-	0,009	-	-	-	-
Dy	0,021	0,018	0,011	0,028	0,021	0,016
Er	-	-	0,012	0,014	-	-
Yb	0,011	ı	-	0,016	0,016	0,010
Lu	-	-	-	-	0,014	-
Th	-	1	0,011	-	0,010	0,061
U	-	0,005	0,004	0,006	0,005	-
Сумма	0,952	0,923	0,999	0,997	0,951	1,015
Zr	0,998	1,001	1,006	0,986	1,081	0,986
Hf	0,013	0,013	0,014	0,017	0,019	0,023
Сумма	1,011	1,014	1,020	1,003	1,100	1,009
Ti	1,660	1,625	1,599	1,603	1,591	1,494
Nb	-	-	-	-	-	0,036
Fe ³⁺	0,340	0,064	0,065	0,344	0,205	0,367
Fe ²⁺	-	0,265	0,245	-	0,123	-
Al	-	-	0,027	-	-	0,041
V	0,026	0,028	0,029	0,028	0,023	0,015
Cr	-	0,011	0,016	0,014	0,017	-
Mn	0,011	-	-	0,010	-	0,023
Сумма	2,037	1,993	1,981	1,999	1,949	1,976
О			7			

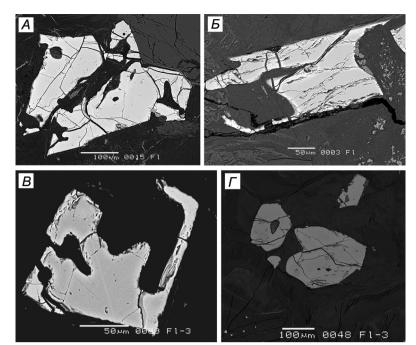


Рис. 6. Магнезиальный ильменит-I: A — кристалл сложной формы (ан. 36, 39, табл. 6); B — скелетный кристалл (ан. 37, 38); B — скелетный кристалл (ан. 40, 41); Γ — группа кристаллов овальной формы (ан. 42, 43); в отраженных электронах

Таблица 6 Химический состав (масс.%) магнезиального ильменита-I в островодужных плагиолерцолитах и оливиновых габбро-норит-долеритах района Балаклавы, Крым

Компо- ненты	36	37	38	39	40	41	42	43
MgO	8,17	8,18	7,58	7,54	7,23	6,91	5,87	5,40
NiO	нпо	нпо	нпо	нпо	0,20	0,14	0,19	0,21
FeO	30,90	31,25	30,51	31,45	33,30	34,21	36,30	36,03
MnO	0,38	0,39	0,64	0,32	0,42	0,44	0,42	0,35
ZnO	нпо	нпо	нпо	нпо	нпо	нпо	нпо	нпо
TiO ₂	51,07	51,44	49,63	50,32	52,09	52,50	52,72	51,40
Fe ₂ O ₃	7,60	6,93	9,31	7,91	5,96	6,49	5,26	5,87
Al_2O_3	нпо	нпо	нпо	нпо	0,09	0,12	нпо	0,04
V_2O_3	0,91	0,89	1,02	0,93	0,78	0,94	0,88	0,93
Cr ₂ O ₃	0,73	0,72	0,60	0,70	0,42	0,67	0,51	0,33
Сумма	99,76	99,80	99,29	99,17	100,49	102,43	102,15	100,56
Содержан	ние мина	алов, мо	л. %					
$MgTiO_3$	29,2	29,1	27,2	27,1	25,7	24,2	20,8	19,5
NiTiO ₃	_	_	1	ı	0,4	0,3	0,4	0,4
FeTiO ₃	61,8	62,3	61,5	63,5	66,4	67,2	72,0	72,8
$MnTiO_3$	0,8	0,8	1,3	0,6	0,8	0,9	0,8	0,7
$ZnTiO_3$	_	_	ı	-	_	_	_	_
Сумма	91,8	92,2	90,0	91,2	93,3	92,6	94,0	93,4
FeFeO ₃	6,6	6,3	8,4	7,1	5,3	5,7	4,6	5,3
AlAlO ₃	_	_	_	_	0,2	0,2	_	0,1
VVO ₃	0,9	0,8	1,0	0,9	0,8	0,9	0,9	0,9
CrCrO ₃	0,7	0,7	0,6	0,7	0,4	0,6	0,5	0,3

Примечания. Количество FeO и ${\rm Fe}_2{\rm O}_3$ рассчитано по стехиометрии. Остальные обозначения см. примечания к табл. 1.

богатого магнием ильменита до 0,5 мм (рис. 6). Форма их нередко сложная (рис. 6, A) до скелетной (рис. 6, E, B), реже овальная (рис. 6, І). Обычно в тех участках пород, где развит армолколит, магнезиальный ильменит отсутствует и наоборот. Изредка наблюдалось обрастание армолколита Мд ильменитом. Ильменит 1-й генерации содержит 5,4-8,2 macc.% MgO, 0,3-0,6% MnO, 0,3-0,7% Cr₂O₃, 0,8-1% V₂O₃ (ан. 36-43, табл. 6), в единичном образце установлена примеь ниобия 0.07 масс. % Nb_2O_5 . Отчетливо проявлен изоморфизм $Mg \leftrightarrow$ Fe²⁺. Более магнезиальный ильменит содержит несколько больше Сг (табл. 6). В составе ильменита 1-й генерации от 1/3 до 1/4 гейкилитового минала (рис. 7). Поздний, бедный магнием ильменит 2-й генерации обычно развит в каймах замещения армолколита (рис. 3, 4). В редких случаях наблюдалось нарастание бедного магнием марганцовистого ильменита 2-й генерации на ильменит 1-й генерации. Ильменит-II обычно слагает мелкие пластинчатые кристаллы и их агрегаты. Ильменит-I и ильменит-II четко различаются по составу (рис. 7). Ильменит-II содержит 0,1-1,7 масс.% МдО, 2,4-11,4% МпО (ан. 44-51, табл. 7), в единичном образце установлено наличие 0,09 масс. % Nb₂O₅.

Апатит. Акцессорный апатит описываемых пород крайне беден лантанидами, очевидно, потому, что они сконцентрированы в более раннем цирконолите. Состав апатита:

$$(Ca_{4,90}Na_{0,03}Fe_{0,02}Mn_{0,01})_{4.96}[(PO_4)_{2,95}\times \times (SiO_4)_{0.07}(SO_4)_{0.02}]_{3.04}(F_{0.67}Cl_{0.06}OH_{0.27}).$$

Как видно, это гидроксилфторапатит с небольшим содержанием кремния и серы.

Заключение. По множеству признаков, плагиолерцолиты и оливиновые габбро-норит-долериты района Балаклавы, обогащенные минералами титана, не имеют ничего общего с офиолитами, за которые их принимали М.Ю. Промыслова с коллегами [Промыслова и др., 2014, 2017]. В составе островодужных низкощелочных плагиолерцолитов и оливиновых габбро-норит-долеритов в районе Балаклавы присутствуют низкохромистые хромшпинелиды ряда алюмомагнезиохромит-алюмохромит-Al-Ti феррихромит — хромтитаномагнетит, магнезиальный ильменит, крайне богатый Ті минерал — армолколит и минерал

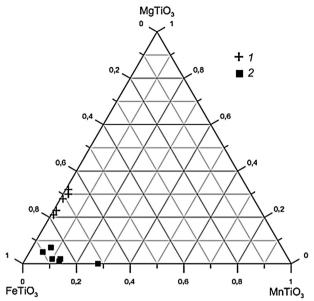


Рис. 7. Состав ильменита-I (1) и ильменита-II (2) плагиолерцолитов и оливиновых габбро-норит-долеритов района Балаклавы, Крым

Ti-Zr-Y-LREE-Th — цирконолит в ассоциации с бадделеитом.

Наличие армолколита и цирконолита в малоглубинных базитовых интрузивах мезозоид Горного Крыма, возможно, объясняется слабым развитием позднемагматических процессов. В противном случае вся масса армолколита была бы замещена ильменитом, а вся масса цирконолита — цирконом, что, вероятно, и имеет место в более глубинных, крупных и насыщенных флюидами интрузивах базитов.

Финансирование. Работа выполнена при финансовой поддержке РФФИ (грант №16-05-00241).

СПИСОК ЛИТЕРАТУРЫ

Бородин Л.С., Лапин А.В., Харченков А.Г. Редкометальные камафориты: формация апатит-форстерит-магнетитовых пород в щелочных-ультраосновных и карбонатитовых массивах. М.: Наука, 1973. 176 с.

Бородин Л.С., Назаренко И.И., Рихтер Т.Л. О новом минерале цирконолите — сложном окисле типа AB_3O_7 // Докл. AH СССР. 1956. Т. 110, № 5. С. 845—848.

Геохимия, минералогия и генетические типы месторождений редких элементов / Под ред. К.А. Власова. Т. 2. М.: Наука, 1964. 830 с.

Годлевский М.Н., Надеждина Е.Д. Бадделеит из габбро-долеритовой интрузии Норильск-I (Сибирская платформа) // Минералы базитов в связи с вопросами петрогенеза. М.: Наука, 1970. С. 177—182.

Капустин Ю.Л. Минералогия карбонатитов. М.: Наука, 1971. 288 с.

Кухаренко А.А., Орлова М.П., Багдасаров Э.А. и др. Каледонский комплекс ультраосновных, щелочных пород и карбонатитов Кольского полуострова и Северной Карелии. М.: Недра, 1965. 772 с.

Лучицкий В.И. Петрография Крыма. Петрография СССР. Сер. 1. Региональная петрография. Вып. 8. М.; Л.: Изд-во АН СССР, 1939. 98 с.

Таблица 7

Химический состав (масс.%) ильменита, замещающего армолколит, в островодужных плагиолерцолитах и оливиновых габбро-норитдолеритах района Балаклавы, Крым

Компо- ненты	44	45	46	47	48	49	50	51
MgO	1,11	1,68	0,61	0,53	0,46	0,28	0,29	0,07
NiO	0,08	0,18	нпо	нпо	0,21	0,17	нпо	0,02
FeO	39,43	38,98	39,60	40,07	38,55	39,22	40,62	30,69
MnO	2,35	2,83	4,10	4,20	5,49	5,59	6,03	11,39
ZnO	нпо	0,05	нпо	нпо	нпо	0,14	нпо	0,02
TiO ₂	48,83	50,20	49,89	50,40	50,18	50,87	52,60	47,17
Fe ₂ O ₃	7,63	3,76	3,97	2,86	4,91	2,35	1,28	9,14
Al ₂ O ₃	0,14	0,22	0,29	0,32	0,15	0,15	нпо	0,15
V ₂ O ₃	0,60	0,95	0,46	0,27	0,44	0,47	0,32	0,42
Cr ₂ O ₃	0,03	0,21	0,11	нпо	0,21	0,23	0,17	нпо
Сумма	100,21	99,01	99,03	98,65	100,60	99,47	101,31	99,07
		Соде	ржание	минал	ов, мол.	%	•	
MgTiO ₃	4,1	6,3	2,3	2,0	1,7	1,1	1,1	0,3
NiTiO ₃	0,2	0,4	_	_	0,4	0,4	_	_
FeTiO ₃	82,7	81,7	84,1	85,4	81,1	83,1	84,5	65,6
MnTiO ₃	5,0	6,0	8,8	9,1	11,7	12,0	12,7	24,6
ZnTiO ₃	_	0,1	_	_	_	0,3	_	-
Сумма	92,0	94,5	95,2	96,5	94,9	96,9	98,3	90,5
FeFeO ₃	7,1	4,1	3,8	2,7	4,3	2,2	1,2	8,8
AlAlO ₃	0,2	0,3	0,4	0,5	0,2	0,2	-	0,2
VVO ₃	0,6	0,9	0,5	0,3	0,4	0,5	0,3	0,5
CrCrO ₃	0,1	0,2	0,1	_	0,2	0,2	0,2	_

Примечания. См. примечания к табл. 1 и 6.

Меньшиков Ю.П., Михайлова Ю.А., Пахомовский Я.А. и др. Минералы группы цирконолита из фенитизированных ксенолитов в нефелиновых сиенитах Хибинского и Ловозерского массивов // Зап. ВМО. 2014. Ч. 143, вып. 4. С. 60–72.

Муратов М.В. Геология Крымского полуострова. М.: Недра, 1973. 192 с.

Плошко В.В., Сиденко О.Г., Иванов В.И. и др. Ассоциация пикритов и кварцевых диабазов Крыма // Докл. АН СССР. 1979. Т. 244. С. 442–445.

Попов С.П. Минералогия Крыма. М.: Изд-во АН СССР, 1938. 352 с.

Промыслова М.Ю., Демина Л.И., Бычков А.Ю. и др. Природа магматизма района мыса Фиолент (Юго-Западный Крым) // Вестн. Моск. ун-та. Сер. 4. Геология. 2014. № 6. С. 14-22.

Промыслова М.Ю., Демина Л.И., Косоруков В.Л. и др. Метаморфизм офиолитов мыса Фиолент (Юго-Западный Крым) // Геодинамические обстановки и термодинамические условия регионального метаморфизма в докембрии и фанерозое. СПб: ИГГД РАН, 2017. С. 151–153.

Рид С.Дж.Б. Электронно-зондовый микроанализ и растровая элекронная микроскопия в геологии. М.: Техносфера, 2008. 232 с.

Розова Е.В., Францессон Е.В., Ботова М.М. и др. Самородное железо и сложные окислы Fe, Ti и Mn в кимберлитах // Докл. АН СССР. 1984. Т. 278, № 2. С. 456—461.

Спиридонов Э.М., Федоров Т.О., Ряховский В.М. Магматические образования Горного Крыма. Статьи 1 и 2 // Бюлл. МОИП. Отд. геол. 1990. Т. 65, вып. 4. С. 119—134; Вып. 6. С. 102—112.

Спиридонов Э.М., Филимонов С.В., Путинцева Е.В. и др. Петля регионального низкоградного метаморфизма вулканогенных, интрузивных и терригенных пород мезозоид Горного Крыма // Ломоносовские чтения-2018а. URL: https://conf.msu.ru/file/event/4912/eid4912_attach_72f01cfa5e832528680d29eeac50f69ec210237f.pdf (дата обращения 25.12.2018).

Спиридонов Э.М., Филимонов С.В., Семиколенных Е.С. и др. Цирконолит, бадделеит, циркон и торит островодужных анортит-битовнитовых кварцевых габбро-норит-долеритов интрузива Аю-Даг, Горный Крым // Вестн. Моск. ун-та. Сер. 4. Геология. 2018б. № 5. С. 70—78.

Спиридонов Э.М., Филимонов С.В., Семиколенных Е.С. и др. Чевкинит-(Се) и перрьерит-(Се) островодужных кварцевых габбро-норит-долеритов интрузива Аю-Даг, Горный Крым // Зап. ВМО. 2018в. (В печати).

Фрондел Дж. Минералогия Луны. М.: Мир, 1978. 333 с.

Цымбал С.Н., Татаринцев В.И., Легкова Г.В., Егорова Л.Н. Армолколит — первая находка в СССР // Минерал. журн. 1980. Т. 2, № 5. С. 87—95.

Akimoto S., Nagata T., Katsura T. The $TiFe_2O_5$ — Ti_2FeO_5 solid solution series // Nature. 1957. Vol. 179. P. 37–38.

Anderson A.T., Bunch T.E., Cameron E.N. et al. Armalcolite: a new mineral from the Apollo 11 samples / Proc. Apollo-11 Lunar Sci. Conf. // Geochim. Cosmochim. Acta. 1970. Vol. 34. Supp. 1. P. 55–63.

Bowles J.F.W. Definition and range of composition of naturally occurring minerals with the pseudobrookite structure // Amer. Mineral. 1988. Vol. 73. P. 1377–1383.

Carlier G., Lorand J.-P. Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the South Peruvian potassic province // Lithos. 2008. Vol. 104. P. 54–70.

Cawthorn R.C., Biggar G.M. Crystallization of titaniferous chromite, magnesian ilmenite and armalcolite in tholeitic suites in the Karoo igneous province // Contrib. Miner. Petrol. 1993. Vol. 114, N 2. P. 221–235.

El Goresy A. Baddeleyite and its significance in impact glasses // J. Geophys. Res. 1965. Vol. 70. P. 3453–3456.

El Goresy A., Chao E.C.T. Identification and significance of armalcolite in the Reis glass // Earth Planet. Sci. Lett. 1976. Vol. 30. P. 200–208.

Franco R.R., Loewenstein W. Zr from the region of Po os de Caldas // Amer. Mineral. 1948. Vol. 33. P. 142–151.

Friel J.J., Harker R.I., Ulmer G.C. Armalcolite stability as a function of pressure and oxygen fugacity // Geochim. Cosmochim. Acta. 1977. Vol. 41. P. 404–410.

Grégoire M., Lorand J.P., O'Reilly S.Y., Cottin J.Y. Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: Implications for the oceanic mantle budget of high-field strength elements // Geochim. Cosmochim. Acta. 2000. Vol. 64. P. 673–694.

Gübelin E.J., Peretti A. Sapphires from Andranondambo mine in SE Madagascar: evidence for metasomatic skarn formation // J. Gemmol. 1997. Vol. 25. P. 453–470.

Haggerty S.E. Armalcolite and genetically associated opaque minerals in the lunar samples / Proc. 4th. Lunar Sci. Conf. // Geochim Cosmochim. Acta. 1973. Supp. 4. 1. P. 777–797.

Lindsley D.H., Kesson S.E., Hartzman M.J. et al. The stability of armalcolite: Experimental studies in the system MgO-Fe-Ti-O / Proc. 5th. Lunar Sci. Conf. // Geochim. Cosmochim. Acta. 1974. Vol. 61. Suppl. 1. P. 521-534.

Mcdonald I., Howell D.A., Armitage P.E.B. Geochemistry and mineralogy of the Platreef and Critical Zone cumulates of the Northern limb of the Bushveld Complex, South Africa: implications for Bushveld stratigraphy and the development of PGE mineralization // Mineral. Deposita. 2005. Vol. 40. P. 526–549.

Murata K.L., Rose H.I., Carron M.K. et al. Systemathic variations of rare earth elements in cerium-rich minerals // Geochim. Cosmochim. Acta. 1957. Vol. 11. P. 141–161.

Pedersen A.K. Armalcolite-bearing Fe-Ti oxide assemblages in graphite-equilibrated salic volcanic rocks with native iron from Disko, central west Greenland // Contrib. Mineral. Petrol. 1981. Vol. 77. P. 307–324.

Scatena-Wachel D.E., Jones A.P. Primary baddeleyite (ZrO₂) in kimberlite from Benfontein, South Africa // Mineral. Mag. 1984. Vol. 48. P. 257–261.

Sørensen H. The agpaitic rocks: an overview // Mineral. Mag. 1997. Vol. 61. P. 485–498.

Stanin F.T., Taylor L.A. Armalcolite: an oxygen fugacity indicator / Proc. 11th. Lunar Planet. Sci. Conf. // Geochim Cosmochim. Acta. 1980. Suppl. 4 (1). P. 117–124.

Steele I.M. Ilmenite and armalcolite in Apollo 17 breccias // Amer. Mineral. 1974. Vol. 59. P. 681–689.

Velde D. Armalcolite — Ti-phlogopite — diopside — analcite — bearing lamproites from Smoky Butte, Garfield County, Montana // Amer. Mineral. 1975. Vol. 60. P. 566–573.

Поступила в редакцию 04.05.2018 Поступила с доработки 10.11.2018 Принята к публикации 11.12.2018