620016, Екатеринбург, ул. Академика Вонсовского, 15

УДК 549.623.5

Т.А. Гвозденко¹, И.А. Бакшеев², Е.И. Герасимова³, Д.А. Ханин⁴, М.В. Червяковская⁵, В.О. Япаскурт⁶

НОВЫЕ ДАННЫЕ О ХИМИЧЕСКОМ СОСТАВЕ ЛИТИЕВЫХ СЛЮД ИЗ ГРАНИТНЫХ ПЕГМАТИТОВ МУРЗИНСКОГО МАССИВА (СРЕДНИЙ УРАЛ)

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», 119991, Москва, ГСП-1, Ленинские Горы, 1 Государственный геологический музей имени В.И. Вернадского РАН, 125009, Москва, ул. Моховая, д. 11, стр. 11 ФГБУН Институт экспериментальной минералогии имени Д.С. Коржинского РАН, 142432, Московская область, Черноголовка, ул. Академика Осипьяна, 4 ФГБУН Институт геологии и геохимии имени А.Н. Заварицкого УРО РАН,

Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskiye Gory, 1 Vernadsky State Geological Museum RAS, 125009, Moscow, Mokhovaya str., 11, korp. 11 Institute of Experimental Mineralogy RAS, 142432, Moscow district, Chernogolovka, Academika Ossipyan, str. 4 Zavaritsky Institute of Geology and Geochemistry UB RAS, 620016, Ekaterinburg, Akademika Vonsovskogo str., 15

Изученные образцы слюд из гранитных пегматитов копей Мокруша и Министерская Мурзинского массива на Среднем Урале представлены полилитионитом, соколоваитом, трилитионитом, Li-содержащими мусковитом и промежуточным членом ряда аннитфлогопит. В светлых слюдах из обеих копей отмечены нехарактерные для них хром и магний, что свидетельствует о контаминации пегматитов веществом вмещающих пород. Низкие значения отношения K/Rb и отношение Ta/Nb определяют высокую степень дифференциации пегматитов из обеих копей.

Ключевые слова: Li-содержащие слюды, гранитные пегматиты, Мурзинский гранитный массив, Средний Урал.

Mica samples from granitic pegmatites of Mokrusha and Ministerskaya mines, Murzinka pluton, Central Urals are polylithionite, sokolovaite, trilithionite, Li-bearing muscovite, and annite—phlogopite series. Chromium and magnesium, uncommon elements for light mica are detected in samples from both mines, indicates host-rock contamination of pegmatites. The low values K/Rb ratio and Ta/Nb ratio define a very high degree of pegmatite differentiation of both mines.

Key words: Li-bearing micas, granitic pegmatite, Murzinka granitic pluton, Central Urals.

Введение. Слюды — типичные породообразующие минералы гранитных пегматитов. Изменения содержания Cs, Rb, Li, Ta, Nb и F в них — важнейшие индикаторы физико-химических условий образования пегматитов и эволюции пегматитовых систем. Для оценки степени дифференциации пегматитов весьма информативно отношение K/Rb в слюдах, постепенно уменьшающееся по мере кристаллизации пегматитов, а также отношение Ta/Nb в этих минералах, где преобладание Та на заключительных этапах пегматитообразования свидетельствует об их дифференциации [Ros-

ing-Schow et al., 2018; Van Lichtervelde et al., 2008; Roda-Robles et al., 2006; Černý et al., 1985].

Мурзинские копи, известные с XVII в., насчитывают более 250 пегматитовых тел с редкометалльной минерализацией и самоцветами (турмалин, топаз, берилл, аметист). Последние литературные данные о минералогии копей относятся к концу прошлого века. В геологической литературе есть ряд работ, посвященных копи Мокруша [Ферштатер и др., 2018; Канонеров и др., 2000; Гурков, 2000; Попов и др., 1999; Смертенко и др. 1980]. Остальные копи, в том числе Мини-

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, аспирант, Государственный геологический музей имени В.И. Вернадского РАН, геммолог; *e-mail*: t.gvozdenko@sgm.ru

² Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, доцент, канд. геол.-минер. н.; *e-mail*: baksheev@geol.msu.ru

³ Государственный геологический музей имени В.И. Вернадского РАН, зав. геммолого-минералогической лабораторией, канд. геол.-минер. н.; *e-mail*: gem@sgm.ru

⁴ ФГБУН Институт экспериментальной минералогии имени Д.С. Коржинского РАН, науч. с.; Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, техник, канд. геол.-минер. н.; *e-mail*: mamontenok49@yandex.ru

⁵ Институт геологии и геохимии имени А.Н. Заварицкого Уральского отделения РАН, лаборатория физических и химических методов исследования, мл. науч. с.; *e-mail*: zaitseva.mv1991@gmail.com

 $^{^6}$ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра петрологии, вед. науч. с., канд. геол.-минер. н.; *e-mail*: yvo72@geol.msu.ru

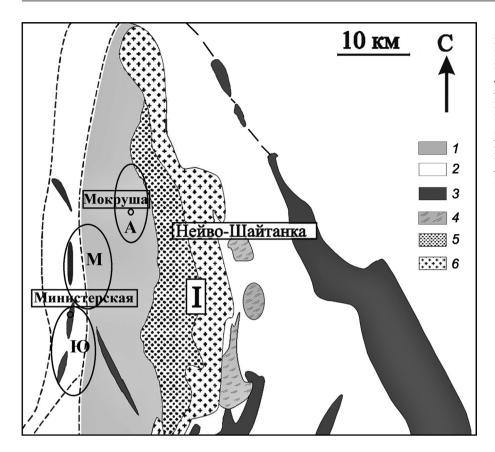


Рис. 1. Схематическая геологическая карта района Мурзинского гранитного массива (I): (упрощенная и дополненная, по [Ферштатер и др., 2018]): *I* — породы мурзинскоадуйского метаморфического комплекса, *2* — силурийско-девонские вулканогенно-осадочные породы, *3* — серпентиниты, *4* — каменноугольные тоналиты, *5* — биотитовые граниты; *6* — двуслюдяные граниты; *A* — Алабашское пегматитовое поле, М — Мурзинское пегматитовое поле, Ю — Южаковское пегматитовое поле

стерская, исследованы гораздо хуже [Канонеров и др., 2000; Попов и др., 1999; Таланцев, 1988].

Среди минералов группы слюд в пегматитах отмечены аннит, сидерофиллит, флогопит, трилитионит, масутомилит, мусковит и вермикулит [Канонеров и др., 2000]. Однако сведения о химическом составе этих минералов практически отсутствуют.

Цель нашей работы — оценка эволюции пегматитовых систем на основе данных о химическом составе литиевых слюд из гранитных пегматитов копей Мокруша и Министерская, расположенных в западном экзоконтакте Мурзинского гранитного массива примерно в 15 км одна от другой.

Геологическое строение. Мурзинский гранитный массив расположен в пределах Мурзинско-Адуйского антиклинория в 100 км на север от г. Екатеринбург (рис. 1). Массив протягивается в субмеридиональном направлении примерно на 60 км при средней ширине около 10 км. По данным работы [Ферштатер и др., 2018], массив сложен гранитами двух типов — ватихским на западе и мурзинским на востоке, отличающимися по минеральному составу. Изотопный возраст этих гранитов, установленный ²⁰⁷Pb/²⁰⁶Pb методом по циркону и Rb-Sr — по породе, определен в 254±5 млн лет [Montero et al., 2000]. В подошве массива находятся жилы гранитных пегматитов, залегающих в пара- и ортогнейсах протерозойского мурзинско-адуйского метаморфического комплекса. В надкровлевой части массива залегают редкометалльные пегматиты, прорывающие

вулканогенно-осадочные и осадочные породы силурийско-девонского возраста. Граниты, прорывающие метаморфический комплекс западнее Мурзинского массива, обособлены в отдельный южаковский тип [Ферштатер и др., 2018].

Гранитные пегматиты, сопряженные с Мурзинским массивом, объединяются в Алабашское, Мурзинское и Южаковское пегматитовые поля, в пределах которых существует около 200 пегматитовых копей [Канонеров и др., 2000].

Копь Мокруша — одна из самых крупных и наиболее изученных среди Мурзинских копей. Жила расположена на 8 км севернее с. Мурзинка в пределах Алабашского пегматитового поля (рис. 1). Жила простирается в субмеридиональном направлении, прорывая вмещающие гнейсы. Длина жилы по простиранию около 500 м, ширина 60-150 м при мощности от 2 до 14 м в разных частях. По результатам разведки и разработки жилы данные о ее строении постоянно изменялись и дополнялись [Гурков, 2000; Попов и др., 1999]. Согласно работе [Гурков, 2000], жила характеризуется плащеобразной формой, образуя синклинальную складку, осложненную во многих участках флексурообразными перегибами, пережимами, раздувами, куполовидными поднятиями и выклинивающуюся на глубине 50-80 м. В жиле выделены следующие зоны: крупнографический пегматит около контакта с вмещающими породами; гранит-пегматит, разделенный грубографическим пегматитом, отмеченный в лежачем боку (в висячем боку гранит-пегматит не установлен);

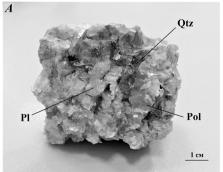
мелкографический пегматит; аплит; пегматит сферолитовой структуры и друзовые полости. Породообразующие минералы представлены полевым шпатом, кварцем и слюдами, наиболее часто встречающиеся второстепенные — топазом, турмалином, гранатом и бериллом [Гурков, 2000; Попов и др., 1999].

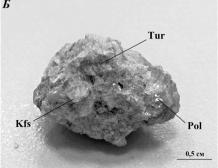
Копь Министерская находится на правом берегу р. Анабарка, на 5 км южнее дер. Сарапулка в пределах Южаковского пегматитового поля (рис. 1). Пегматитовая жила имеет пластинообразную форму, простирается на 100 м в длину при мощности 3–5 м, залегает в серпентинитах. Главные минералы жилы — полевой шпат и кварц, срастающиеся в письменный гранит. Копь известна благодаря находкам друз с рубеллитом, лепидолитом, родицитом и кордиеритом [Канонеров и др., 2000; Таланцев, 1988; Ферсман, 1962].

Материалы и методы исследования. Исследовано 23 образца слюд из гранитных пегматитов копей Мокруша (12 обр.) и Министерская (11 обр., включая 2 образца темных слюд), предоставленных И.В. Пековым.

Слюды из пегматитов копи Мокруша образуют светло-серые, светло-розовые до фиолетовых, иногда зональные по окраске (от розового цвета в периферийной части к светло-серому в центральной), пластинчатые и таблитчатые, нередко псевдогексагональные кристаллы размером до 2,5 см в поперечнике.

Слюды из пегматитов копи Министерская представлены светло-фиолетовыми пластинчатыми и мелкочешуйчатыми агрегатами размером до 2,2 см в поперечнике. Темные слюды образуют «мечевидные» зеленовато-коричневые кристаллы до 1—2 см в длину (рис. 2).


Макроскопические и микроскопические исследования выполнены в геммолого-минералогической лаборатории ГГМ РАН с помощью оптического микроскопа GM-168 («Моtic», Гонконг), снабженного цифровой камерой и компьютером.


Рентгеноспектральный микроанализ проведен в лаборатории локальных методов исследования вещества кафедры петрологии геологического факультета МГУ имени М.В. Ломоносова с помощью

сканирующего электронного микроскопа JSM-6480LV («Jeol», Япония) с вольфрамовым термоэмиссионным катодом, оснащенного измерителем тока электронного зонда и энергодисперсионным спектрометром X-MaxN-50 («Oxford Instruments Ltd.», Великобритания) со сверхтонким окном детектора и площадью активной зоны кристалла 10 мм². Условия съемки: ускоряющее напряжение 20 кВ, ток зонда на образце 0.7 ± 0.05 нА. В качестве стандартных образцов сравнения использовали диопсид (Mg, Si), флюорит (F), галит (Na), роговую обманку (Al), калиевый полевой шпат (K), клинопироксен (Ca), Ti, Cr, Mn, Fe, Ni, Zn — для соответствующих элементов, а также Rb₂Nb₄O₁₁ (Rb) и $Cs_2Nb_4O_{11}$ (Cs). Относительная погрешность измерения не превышала 0,3 масс.%.

Масс-спектрометрия с индуктивно-связанной плазмой и лазерным пробоотбором (ЛА-ИСП-МС) выполнена с помощью масс-спектрометра NexION 300S («PerkinElmer», США) с приставкой NWR213 (ESI) для лазерного пробоотбора в Институте геологии и геохимии имени А.Н. Заварицкого УРО РАН. Условия съемки: энергия лазерного излучения $10.5-11.5 \, \text{Дж/см}^2$, частота повторений импульсов 10 Гц, диаметр кратера 50 мкм, расход транспортирующего потока Не 400 мл/мин, время работы лазера 50 с, время прогрева лазера перед измерением 20 с. Полученные результаты обработаны в программе GLITTER V4.4. Внутренний стандарт — SiO₂, внешний первичный стандарт стекло NIST SRM 610, вторичный — стекло NIST SRM 612. Анализ проводился с замером эталона через каждые 10-12 измерений. Погрешность анализа не превышала 10%.

Расчет формул. Эмпирические формулы слюд рассчитывались на 22 атома (O, OH, F) по [Rosing-Schow et al., 2018]. Содержание Li_2O рассчитано по результатам ЛА-ИСП-МС, а также по данным рентгеноспектрального микроанализа с помощью нескольких способов, описанных в работе [Tischendorf et al., 1997]: для триоктаэдрических слюд — (0,289SiO₂) — 9,658; (0,697F) + 1,026; (2,7/(0,35 + MgO)) — 0,13 и 155MgO^{-3,1}, для диоктаэдрических слюд — 0,3935F^{1,326} и 1,579Rb₂O^{1,45}. Содержание H_2O рассчитано по стехиометрии.

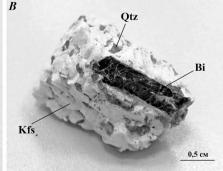


Рис. 2. Выборочные образцы исследованных слюд: A — обр. 59 (копь Мокруша), B — обр. 33 (копь Министерская), B — обр. 47.1 (копь Министерская). Pl — плагиоклаз, Qtz — кварц, Pol — полилитионит, Kfs — калиевый полевой шпат, Tur — турмалин, Ві — биотит

Таблица 1 Химический состав слюд (масс.%) из пегматитов копей Мокруша и Министерская

Состав		Министерская, номер образца								
	58	51	59	54	60	33	48	42	37.1	47.2
Тип слюды	П	П	П	П	С	П	П	T	ЛМ	Б
SiO ₂	51,42	50,57	53,36	55,76	46,50	50,70	54,50	52,65	43,58	34,65
TiO ₂	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,49	0,15	1,79
Al_2O_3	21,68	22,67	22,69	18,10	12,87	27,02	17,31	18,50	35,99	18,33
FeO	0,09	2,00	0,05	2,01	0,79	0,01	н.п.о.	0,06	0,82	16,52
MnO	0,20	2,89	н.п.о.	0,72	0,29	0,11	0,12	0,29	0,61	1,28
MgO	н.п.о.	н.п.о.	0,02	0,03	0,04	н.п.о.	н.п.о.	н.п.о.	0,01	9,06
CaO	0,05	0,05	0,06	0,08	0,06	0,04	0,06	0,04	0,04	0,53
Na ₂ O	0,10	0,33	0,42	0,08	н.п.о.	0,26	0,10	0,08	0,41	0,09
K ₂ O	10,72	10,16	10,30	10,72	0,67	10,72	10,64	9,37	10,47	7,53
Rb ₂ O	0,76	1,39	1,84	1,12	0,76	1,12	2,23	2,41	0,45	0,21
Cs ₂ O	0,84	0,31	0,27	0,56	24,58	0,96	0,60	0,70	0,07	0,05
Li ₂ O*	6,60	7,79	6,90	7,84	(5,41)	6,28	(7,37)	(4,94)	0,45	0,44
F	7,29	9,11	8,80	8,96	6,29	7,83	9,10	5,61	1,57	0,42
H ₂ O _{pacч.}	0,96	0,27	0,42	0,36	0,66	0,91	0,11	1,59	3,63	3,60
O=F ₂	-3,07	-3,84	-3,71	-3,77	-2,65	-3,30	-3,83	-2,36	-0,66	-0,18
Сумма	97,64	103,70	101,42	102,57	96,27	102,66	98,31	94,37	97,59	94,32
	Формульные коэффициенты, рассчитанные на 22 (O, OH, F) атома									
Si	6,979	6,608	6,968	7,255	7,659	6,577	7,387	7,426	5,977	5,468
Al ^{IV}	1,021	1,392	1,032	0,745	0,341	1,423	0,613	0,574	2,023	2,532
$\frac{\Sigma_{\text{tetp.}}}{\text{Al}^{\text{VI}}}$	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	2,447	2,099	2,460	2,030	2,157	2,708	2,152	2,501	3,794	0,878
Ti	_	_	_	_	_	_	_	0,052	0,015	0,212
Fe ²⁺	0,010	0,219	0,005	0,219	0,109	0,001	_	0,007	0,094	2,180
Mn ²⁺	0,023	0,320	_	0,079	0,040	0,012	0,014	0,035	0,071	0,171
Mg	_	_	0,004	0,006	0,010	_	_	_	0,002	2,132
Li	3,603	4,094	3,624	4,100	3,584	3,277	4,017	2,800	0,248	0,279
$\Sigma_{ m OKT.}$	6,083	6,732	6,093	6,434	5,900	5,998	6,183	5,395	4,224	5,852
K	1,856	1,694	1,716	1,779	0,141	1,774	1,840	1,686	1,832	1,516
Ca	0,007	0,007	0,008	0,011	0,011	0,006	0,009	0,006	0,006	0,090
Na	0,026	0,084	0,106	0,020	_	0,065	0,026	0,022	0,109	0,028
Rb	0,066	0,117	0,154	0,094	0,080	0,093	0,194	0,219	0,040	0,021
Cs	0,049	0,017	0,015	0,031	1,726	0,053	0,035	0,042	0,004	0,003
$\Sigma_{\mathrm{M/CJI}}$	2,004	1,919	1,999	1,935	1,958	1,991	2,104	1,975	1,991	1,658
F	3,129	3,764	3,634	3,687	3,276	3,212	3,901	2,502	0,681	0,210
OH _{pacч.}	0,871	0,236	0,366	0,313	0,724	0,788	0,099	1,498	3,319	3,790

Примечания. П — полилитионит, С — соколоваит, Т — трилитионит, ЛМ — Li-содержащий мусковит, Б — биотит; н.п.о. — содержание элемента ниже предела обнаружения; Li_2O^* — значения, приведенные в скобках, рассчитаны по уравнению (0,697F) + 1,026 [Tischendorf et al., 1997]; $\text{H}_2\text{O}_{\text{расч}}$ — содержание рассчитывалось по стехиометрии.

Результаты исследований и их обсуждение. По данным рентгеноспектрального микроанализа и ЛА-ИСП-МС анализа (проводились на однородных по цвету участках слюд) исследованные образцы из пегматитов копи Мокруша относятся к полилитиониту и соколоваиту. В слюдах из пегматитов копи Министерская установлены: полилитионит, трилитионит, литиевый мусковит и Li-содержащий промежуточный член ряда аннитфлогопит. Представительные составы изученных слюд приведены в табл. 1.

Вариации содержания лития. Полилитионит. В полилитионите из пегматитов копи Мокруша

концентрация Li, рассчитанная по уравнению (0,697F)+1,026 [Tischendorf et al., 1997], составляет 6,11-7,38 масс.% Li₂O, что хорошо согласуется с данными ЛА-ИСП-МС анализа (6,02-8,36 масс.% Li₂O) (табл. 2). В то же время содержание Li, рассчитанное по уравнению $(0,289SiO_2)-9,658$ [Tischendorf et al., 1997], оказалось сильно заниженным (5,20-6,46 масс.% Li₂O) по сравнению с результатами ЛА-ИСП-МС анализа (табл. 2).

В соколоваите (1,73 а.ф. Сs, табл. 1), образующем прожилки и вростки в полилитионите (рис. 3), содержание Li, рассчитанное по уравнению (0,697F) + 1,026, составляет 5,41 масс.% Li₂O.

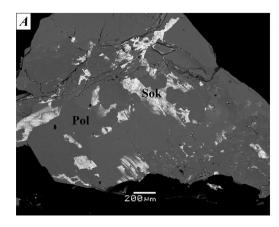
Номер образца	ЛА-ИСП-МС	по SiO ₂	по F				
Мокруша							
58	6,02-7,18	5,20	6,11				
51	7,21-8,36	5,60	7,38				
59	6,54-7,26	5,76	7,16				
54	7,40-8,27	6,46	7,27				
55	6,50-8,01	5,44	6,87				
56.2	6,25-7,40	5,21	6,98				
Министерская							
48	8,46-9,11	7,48	7,80				
33	5,83-6,73	4,99	6,48				

Таблица 2 Содержание Li₂O (масс.%) в слюдах из пегматитов копей Мокруша и Министерская

В полилитионите из пегматитов копи Министерская концентрация Li, рассчитанная по содержанию F по тому же уравнению, что и для полилитионита из пегматитов копи Мокруша, составляет 6,48—7,85 масс.% Li₂O. По данным ЛА-ИСП-МС анализа один из изученных образцов слюды имеет высокое содержание Li (до 9,11 масс.% Li₂O, табл. 2), что значительно больше по сравнению с расчетными данными (7,80 масс.% Li₂O, табл. 2). В остальных случаях результаты, полученные при расчете по уравнению (0,697F) + 1,026, хорошо сопоставляются с данными ЛА-ИСП-МС анализа.

Трилитионит. Концентрация Li в трилитионите из пегматитов копи Министерская, рассчитанная по уравнению (0,697F) + 1,026, составляет 4,94 масс.% Li₂O.

Литийсодержащий мусковит. По данным ЛА-ИСП-МС анализа концентрация Li в мусковите составляет 0,35-0,55 масс.% Li₂O. Содержание Li, рассчитанное по уравнению $0,3935F^{1,326}$ [Tischendorf et al., 1997], равно 0,72 масс.% Li₂O, тогда как при расчете по уравнению $1,579Rb_2O^{1,45}$ [Tischendorf et al., 1997] концентрация Li в мусковите — 0,50 масс.% Li₂O, что лучше сопоставляется с результатами ЛА-ИСП-МС анализа.


Биотите. Содержание Li в биотите из пегматитов копи Министерская по данным ЛА-ИСП-МС

анализа составляет 0,44-0,57 масс.% Li₂O. При расчете концентрации Li в слюдах, обогащенных магнием, по предложенным в работе [Tischendorf et al., 1997] уравнениям: (2,7/(0,35+MgO))-0,13 и $155MgO^{-3,1}$ получены более низкие значения концентрации Li (0,16 и 0,17 масс.% Li₂O соответственно).

Таким образом, метод ЛА-ИСП-МС наиболее точный и предпочтительный для определения содержания Li в минералах группы слюд. При расчете содержания лития в светлых триоктаэдрических слюдах пегматитов, сопряженных с гранитами Мурзинского массива, по данным рентгеноспектрального микроанализа предпочтительнее использовать уравнение (0,697F) + 1,026. В случае диоктаэдрического Li-содержащего мусковита лучше использовать уравнение 1,579Rb₂O^{1,45}. Для темных триоктаэдрических слюд ни одно из уравнений, приведенных в работе [Tischendorf et al., 1997], не дало удовлетворительного результата.

Вариации содержания примесных компонентов. В целом в литиевых слюдах из пегматитов копей Мокруша и Министерская наблюдаются широкие вариации содержания примесных компонентов. В слюдах из пегматитов копи Мокруша концентрация Мп варьирует от 394 г/т в светло-серых слюдах до 21434 г/т в фиолетовых образцах. Содержание Мп в светло-розовых литиевых слюдах из пегматитов копи Министерская составляет 1000—1070 г/т. Максимальные значения концентрации Ti, Cr, Zn, Sn, Ta, Nb, Cs и B составляют (г/т): 440 и 92, 14 и 52, 286 и 1, 211 и 93, 89 и 176, 156 и 56, 10097 и 8783, 497 и 335 соответственно. Содержание Ga, Р и Rb в литиевых слюдах из пегматитов обеих копей близкое и составляет (г/т): Ga 69-210 и 41-201, P 59-150 и 57-167, Rb 7013-24567 и 6404-22754. В то же время для Мg, Sc и Ве интервалы содержания не перекрываются (Γ/T): Mg 1-10 и 54-133, Sc 22-33 и 3-7, Ве 31-72 и 10-30 (табл. 3).

По данным ЛА-ИСП-МС анализа содержание Ті, Мп, Ga, Nb и Zn в мусковите из пегматитов копи Министерская значительно выше по сравнению с их концентрацией в полилитионите из этой же копи (г/т): 1600 и 83, 4237 и 1073, 464 и 158, 163 и 47, 477 и 0,3 соответственно, а со-

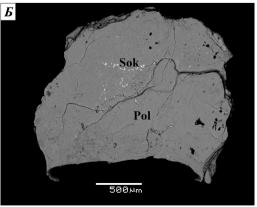


Рис. 3. Вростки соколоваита в полилитионите из пегматитов копи Мокруша: A — обр. 60, B — обр. 58. Sok — соколоваит, Pol — полилитионит. Фото в отраженных электронах

Tаблица $\,3$ Средние значения содержания элементов (г/т) в слюдах из пегматитов копей Мокруша и Министерская по данным ЛА-ИСП-МС

	Мокруша, номер образца							Министерская, номер образца				
Элемент	59	54	55	51	56.2	58	37.1	33	48	47.2		
	(n=4)	(n=4)	(n=4)	(n=4)	(n=4)	(n=3)	(n=4)	(n=4)	(n=4)	(n=2)		
	П	П	П	П	П	П	ЛМ	П	П	Б		
Li	33510,8	36416,3	33814,1	35438,1	32279,9	30605,3	2080,9	29227,3	40530,7	2031,1		
	(2574,9)	(1702,4)	(3059,4)	(2504,1)	(2380,5)	(2699,4)	(477,7)	(1778,6)	(1272,5)	(13,9)		
Be	59,6	45,8	45,2	55,2	40,1	23,6	19,9	29,7	12,9	54,8		
	(11,1)	(12,7)	(10,4)	(6,8)	(6,8)	(9,0)	(2,7)	(3,9)	(2,8)	(1,3)		
В	122,4	98,1	98,0	138,5	82,4	376,6	242,1	282,9	279,9	4,7		
	(21,3)	(4,7)	(17,0)	(19,3)	(19,8)	(105,2)	(20,5)	(38,9)	(25,7)	(0,7)		
P	93,8	80,0	73,0	64,4	56,4	139,8	129,0	146,1	61,6	109,0		
	(15,5)	(7,5)	(11,6)	(14,6)	(39,9)	(13,6)	(10,8)	(24,0)	(5,0)	(38,2)		
Mg	0,3 (0,5)	0,8 (0,9)	6,0 (3,4)	н.п.о.	0,5 (1,0)	7,6 (7,6)	34,8 (23,9)	33,2 (66,5)	н.п.о.	48957,3 (1398,8)		
Sc	0,3 (0,4)	0,3 (0,4)	0,3 (0,4)	26,2 (5,00)	23,7 (1,3)	0,3 (0,3)	1,3 (0,4)	н.п.о.	4,6 (1,7)	166,6 (0,3)		
Ti	36,3	113,0	69,0	263,2	404,2	29,7	1600,2	46,3	83,2	11330,8		
	(6,5)	(9,9)	(11,9)	(44,8)	(26,5)	(3,1)	(123,5)	(10,6)	(9,2)	(335,1)		
Cr	10,3	6,1	7,1	6,1	4,3	3,1	4,2	18,8	4,9	17,3		
	(3,1)	(1,5)	(2,1)	(0,7)	(3,1)	(2,8)	(3,0)	(22,6)	(3,5)	(11,5)		
Mn	393,8	5091,3	1051,3	4381,0	21433,6	1073,3	4236,9	1008,3	1073,1	14372,3		
	(85,8)	(142,4)	(256,7)	(964,7)	(3103,8)	(74,5)	(198,8)	(52,6)	(145,1)	(3300,5)		
Zn	6,7 (3,9)	12,2 (4,7)	17,4 (4,5)	19,4 (8,7)	218,6 (58,9)	1,5 (1,0)	477,4 (32,6)	0,3 (0,5)	н.п.о.	194,3 (7,0)		
Ga	161,4	98,9	91,2	138,9	126,4	81,5	464,4	157,9	35,1	117,3		
	(35,8)	(6,6)	(16,4)	(12,2)	(8,3)	(23,1)	(17,0)	(47,5)	(5,1)	(5,4)		
Rb	22625,9	16754,5	16939,1	18871,6	17081,8	7392,2	4206,4	7901,5	21685,0	1868,7		
	(2383,0)	(858,1)	(1936,8)	(600,8)	(470,1)	(497,2)	(109,0)	(1037,3)	(976,2)	(56,0)		
Nb	146,7	98,4	116,5	80,5	77,6	6,94	163,0	35,215	47,2	658,0		
	(13,9)	(5,6)	(13,3)	(3,6)	(3,3)	(0,5)	(18,0)	(22,2)	(5,1)	(1,1)		
Sn	78,2	201,4	142,5	171,7	151,1	0,9	144,6	1,9	71,5	274,6		
	(12,6)	(7,1)	(18,7)	(12,9)	(5,0)	(1,0)	(10,9)	(1,1)	(17,2)	(12,1)		
Cs	8706,0	1358,7	1936,0	3809,0	2919,9	7701,3	644,7	7816,5	7296,7	464,2		
	(985,0)	(76,2)	(201,8)	(486,5)	(80,7)	(2095,8)	(17,0)	(795,8)	(522,5)	(27,6)		
Та	37,4	36,6	40,4	61,0	49,3	70,9	108,0	131,8	80,8	43,9		
	(9,8)	(1,0)	(4,8)	(7,4)	(2,8)	(18,3)	(8,3)	(45,6)	(15,6)	(1,6)		

Примечания. П — полилитионит, ЛМ — Li-мусковит, Б — биотит; н.п.о. — содержание элемента ниже предела обнаружения; n=4 — число анализов; (0,5) — стандартное отклонение.

держание Сs, напротив, заметно увеличивается от мусковита (645) к полилитиониту (7817). В то же время концентрация В (240 г/т) сопоставима с его содержанием в полилитионите (табл. 3).

При сопоставлении данных химического состава, полученных методом ЛА-ИСП-МС, содержание Mg, Sc, Ti и Nb в биотите выше, чем в литиевых слюдах (г/т): 48957 и 35, 167 и 5, 11331 и 83, 658 и 47 соответственно, тогда как содержание B, Rb и Cs, напротив, заметно ниже (г/т): 5 и 283, 1869 и 21685, 464 и 7817 соответственно.

По данным ЛА-ИСП-МС анализа содержание редкоземельных элементов (РЗЭ) в литиевых слюдах и мусковите ниже предела обнаружения, максимальная концентрация РЗЭ в биотите — 109 г/т, преобладают легкие РЗЭ.

Величина отношения K/Rb в изученных слюдах заметно отличается. Весьма показательно, что в полилитионите из пегматитов копи Мокруша она находится в интервале 12,7—4,2, снижаясь до 0,8 в

соколоваите, в то время как в слюдах из пегматитов копи Министерская значение K/Rb снижается от 34,9-32,8 в биотите до 21,2 в мусковите, 3,6 в полилитионите и 3,5 в трилитионите.

Отношение Ta/Nb в слюдах из гранитных пегматитов копи Мокруша в основном не превышает 1, однако в одном из образцов полилитионита это значение составляет 10,2, что обусловлено очень низким содержанием Nb по сравнению с аналогичными слюдами из этой копи (табл. 3). В то же время в литиевых слюдах из пегматитов копи Министерская отношение Ta/Nb варьирует от 1,7 до 3,7, что в целом свидетельствует о преобладании Та в этих слюдах, в отличие от образцов из пегматитов копи Мокруша.

Литиевые слюды из пегматитов копей Мокруша и Министерская схожи по основным минералообразующим компонентам, в том числе по содержанию Li (табл. 1, 2). Однако в полилитионите из пегматитов копи Мокруша установлена повышенная концентрация Ті, Мп, Zn и Nb по сравнению с полилитионитом из пегматитов копи Министерская, что, вероятнее всего, связано с разным составом пегматитовых систем этих копей. Розовый и фиолетовый цвет литиевых слюд из пегматитов копи Мокруша обусловлен повышенным содержанием Мп. Так, в фиолетовом полилитионите концентрация Мп достигает 21434 г/т, в то время как светло-розовые образцы слюд из пегматитов копи Министерская отличаются более низким содержанием Мп (1000 г/т).

В литиевых слюдах из пегматитов обеих копей отмечены нехарактерные для них хром и магний. Согласно данным [Ферштатер и др., 2018], в районе копи Мокруша концентрация Сг в гранитах на контакте с пегматитами не превышает 1 г/т, в то время как во вмещающих гнейсах эта величина достигает 192 г/т. Учитывая, что пегматиты локализованы в гнейсах, наличие в литиевых слюдах Сг (до 14 г/т) и Мд (до 10 г/т) можно объяснить контаминацией веществом вмещающих пород. А.С. Таланцев [1988] также указывал на признаки контаминации пегматитов Мокруши. Содержание Ст и Мд в слюдах из пегматитов копи Министерская в несколько раз выше, чем в образцах пегматитов из копи Мокруша (52 и 133 г/т соответственно), что, очевидно, обусловлено различиями во вмещающих породах пегматитов. Существенное влияние вмещающих пород на состав гранитных пегматитов копи Министерская отмечено в работе [Таланцев, 1988], где они описаны как контаминированные. Для сравнения — в литиевых слюдах из редкометалльных пегматитов Хейдален пегматитового поля Тёрдал, расположенного в пределах крупнейшей Свеконорвежской пегматитовой провинции в Норвегии, также отмечено повышенное содержание Mg (362 г/т), но Cr отсутствует [Rosing-Schow et al., 2018]. Однако источник, ответственный за образование этих пегматитов, до конца не выяснен — либо пегматиты связаны с гранитным плутоном [Rosing-Schow et al., 2018; Andersen et al., 2007], в этом случае наличие Mg в литиевых слюдах объясняется контаминацией веществом вмещающих пород, либо они рассматриваются как продукт анатектического расплава амфиболитов, обогащенных Mg [Steffenssen, 2018].

Появление прожилков и вростков соколоваита — цезиевого аналога полилитионита — в литиевых слюдах из пегматитов копи Мокруша, очевидно, объясняется накоплением Сѕ в пегматитовой системе. Сѕ — типичный некогерентный элемент, который часто фракционирует только на последних этапах пегматитообразования [Marchal et al., 2014]. Аналогичные обособления соколоваита в литиевых слюдах гранитных пегматитов отмечены в работах [Potter et al., 2009; Wang et al., 2006; Ercit et al., 2003]. Э.Г. Поттер с соавторами [Potter et al., 2009] полагают, что соколоваит, заполняющий трещины в пегматите, образуется при участии обогащенного Сs флюида при переходе от магматической к гидротермальной стадии развития пегматитов. В литиевых слюдах из пегматитов копи Министерская соколоваит пока не установлен, однако в литературе [Таланцев, 1988; Канонеров и др., 2000] среди минералов этой копи отмечен родицит, содержащий Сs.

Отношение K/Rb в слюдах — информативный индикатор степени дифференциации пегматитов [Rosing-Schow et al., 2018; Roda-Robles et al., 2006; Cerny et al., 1985]. Величина K/Rb в собственно гранитах и на ранних этапах эволюции пегматитовых систем составляет около 300-200, постепенно уменьшаясь до 4-2 на последних стадиях пегматитообразования [Rosing-Schow et al., 2018; Černý et al., 1985]. Отношение K/Rb в исследованных образцах слюд последовательно уменьшается от раннего биотита к позднему соколоваиту при одновременном увеличении концентрации Li, F и Cs, что также отмечено в работе [Van Lichtervelde et al., 2008]. Наименьшие значения отношения K/Rb в литиевых слюдах из пегматитов копей Мокруша и Министерская (0,8 и 3,5 соответственно) позволяют сделать вывод о высокой степени дифференциации пегматитов в обеих копях. Для сравнения — минимальные значения отношения K/Rb, установленные в лепидолите из наиболее эволюционировавших гранитных пегматитов Свеконорвежской пегматитовой провинции, составляют 4,1-3,2 [Rosing-Schow et al., 2018], в лепидолите из высокодифференцированных пегматитов Танко (Kанада) - 2,1 [Černý et al., 1985].

В работе [Rosing-Schow et al., 2018] преобладание Та в слюдах гранитных пегматитов Тёрдал интерпретируется как подтверждение высокой степени дифференциации пегматитов (Ta/Nb = $0,5 \div 2,4$). В этой же работе приводится ссылка на высокое отношение Ta/Nb (3,5) в слюдах из пегматитов Танко в Канаде [Černý et al., 1985; Van Lichtervelde et al., 2008]. Таким образом, высокая концентрация Та в слюдах из пегматитов копи Министерская позволяет рассматривать их как высокодифференцированные. В то же время низкое содержание Та в литиевых слюдах из пегматитов копи Мокруша по сравнению со слюдами из пегматитов копи Министерская, вероятнее всего, связано с вхождением этого компонента в другие минералы, предположительно в микролит, отмеченный в пегматитах копи Мокруша [Попов и др., 1999]. Пониженная концентрация Nb, установленная в одном из образцов полилитионита из пегматитов копи Мокруша, также, скорее всего, связана с фракционированием Nb в собственный минерал, предположительно в ферроколумбит [Попов и др., 1999].

Таким образом, полученные результаты свидетельствуют, что рассматриваемые пегматиты копей Мокруша и Министерская относятся к высокодифференцированным при формировании литиевых слюд на заключительных этапах развития пегматитов.

Заключение. Слюды — важнейшие минералы гранитных пегматитов, заключающие информацию об условиях пегматитообразования. В статье представлены новые прецизионные данные о химическом составе литиевых слюд из гранитных пегматитов копей Мокруша и Министерская. Полученные результаты (существенная концентрация Li на заключительных стадиях пегматитообразования, присутствие примесных Cr, Mg и значения величины отношений K/Rb, Ta/Nb) позволяют отнести пегматиты этих копей к высокодиффе-

СПИСОК ЛИТЕРАТУРЫ

Гурков И.А. Пегматитовая жила Мокруша // Уральский геол. журн. 2000. № 6 (18). С. 47—98.

Канонеров А.А., Чудинова Н.Д. Мурзинские самоцветные копи (путеводитель и кадастр минералов). 2-е изд. Уральская летняя минералогическая школа. Екатеринбург: Изд. УГГГА, 2000. 41 с.

Попов В.А., Попова В.И. Копь Мокруша: Очерк истории освоения и минералогия. Миасс: ИМин УрО РАН, 1999. 71 с.

Смертенко В.М., Корендясев Г.А., Канторович В.И., Ворожев Е.С. Геологическое строение месторождения самоцветов Мокруша на Среднем Урале // Драгоценные и цветные камни. М.: Наука, 1980. С. 117—135.

Таланцев А.С. Камерные пегматиты Урала. М.: Наука, 1988. 144 с.

Ферсман А.Е. Избранные труды. Т. 7. Драгоценные и цветные камни СССР. М.: Изд-во АН СССР, 1962. 692 с.

Ферштатер Г.Б., Бородина Н.С. Мурзинский массив на Среднем Урале как пример межформационного гранитного плутона: магматические источники, геохимическая зональность, особенности формирования // Литосфера. 2018. № 18(5). С. 672—691.

Andersen T., Graham S., Sylvester A.G. Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: new results from laser-ablation ICPMS U-Pb dating of zircon // Geol. Surv. Norway Bull. 2007. Vol. 447. P. 17–31.

Černý P., Meintzer R.E., Anderson A.J. Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms // Canad. Mineral. 1985. Vol. 23. P. 381–421.

Ercit T.S., Groat L.A., Gault R.A. Granitic pegmatites of the O'Grady batholith, N.W.T., Canada: a case study of the evolution of the elbaite subtype of rare-element granitic pegmatite // Canad. Mineral. 2003. Vol. 41. P. 117–137.

Lichtervelde van M., Gregoire M., Linnen R.L. et al. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco peg-

ренцированным и контаминированным веществом вмещающих пород. Сопоставление расчетных данных и данных ЛА-ИСП-МС анализа позволило выявить наиболее корректные способы оценки концентрации Li в литиевых слюдах пегматитов, сопряженных с гранитами Мурзинского массива: для триоктаэдрических слюд предпочтительнее уравнение (0,697F) + 1,026, для диоктаэдрических — $1,579Rb_2O^{1,45}$.

Благодарности. Авторы выражают благодарность И.В. Пекову за предоставленные образцы и обсуждение результатов, Н.В. Сорохтиной, А.Р. Котельникову — за ценные замечания и дополнения.

matite, Manitoba, Canada // Contrib. Mineral. Petrol. 2008. Vol. 155. P. 791–806.

Marchal K.L., Simmons W.B., Falster A.U. et al. Geochemistry, mineralogy, and evolution of Li-Al micas and feldspars from the Mount Mica pegmatite, Maine, USA // Canad. Mineral. 2014. Vol. 52. P. 221–233.

Montero P., Bea F., Gerdes A. et al. Single-zircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals. A perspective on the timing of deformation and granite generation // Tectonophysics. 2000. N 317. P. 93–108.

Potter E.G., Taylor R.P., Jones P.C. et al. Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, Opatica subprovince, Quebec, Canada // Canad. Mineral. 2009. Vol. 47(2). P. 337–349.

Roda-Robles E., Pesquera, A., Gil-Crespo P.P. et al. Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain) // Europ. J. Mineral. 2006. Vol. 18. P. 369–377.

Rosing-Schow N., Muller A., Friis H. A comparison of the mica geochemistry of the pegmatite fields in southern Norway // Canad. Mineral. 2018. Vol. 56. P. 463–488.

Steffenssen G. The distribution and enrichment of scandium in garnets from the Tørdal pegmatites, and its economic implications: Master thesis. Department of Geosci. Faculty of Mathematics and Natural Sciences University of Oslo, 2018. 105 p.

Tischendorf G., Gottesmann B., Förster H.-J. et al. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation // Mineralogical Magazine. 1997. Vol. 61(6). P. 809–834.

Wang R.C., Hu H. Zhang A.C., Fontan F. et al. Cs-dominant polylithionite in the Koktokay #3 pegmatite, Altai, NW China: in situ microcharacterization and implication for the storage of radioactive cesium // Contrib. Mineral. Petrol. 2006. Vol. 153. P. 355–367.

Поступила в редакцию 28.11.2019 Поступила с доработки 15.01.2020 Принята к публикации 15.01.2020